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Abstract

For the deeper understanding of the molluscan muscles for their effective utilization, the
major protein components of molluscan mantle muscle, namely, myosin (heavy chain) and
tropomyosin, were investigated from the viewpoint of structure-stability relationships. Molluscan
myosin heavy chains are unique in that they have several additional residues in the rod region
forming a-helical coiled-coil structure. On the other hand, molluscan tropomyosins clearly differed
from other orthologous proteins, suggesting that the structural uniqueness gives rise to their
characteristics, such as allergenicity. The amino acid sequence data, together with thermodynamic
analysis data, could be useful to estimate the stability (or instability) of these protein components,
and further the properties of the muscle per se.

Introduction

The phylum Mollusca (consisting of more than 110,000 species) has diverged in
a variety of forms and ecological profiles, i.e., from bivalves, gastropods and further to
cephalopods, which possess advanced brain and excellent locomotion system enabling
their dexterous swimming at high speed, mainly by jet propulsion (Rokni and Hochner
2002, Takuwa-Kuroda et al. 2003). They are the highest class of the phylum, consisting
of subclasses Coleoidea and Nautiloidae with 786 living species. They occur in all
marine habitats of the world, and are great sources of protein from the sea, thus important
for commercial fisheries and processing. Incidentally, the annual catch of mollusc in
the world is around four million tons per year, and approximately 2.3 megatons for
squids. For the effective utilization of the edible parts (mostly muscles) of molluscs,
molecular approach to proteins consisting myofibril is worth intensive investigation.

Myosin and paramyosin are the two major components of molluscan muscle.
Paramyosin does not show any biological activity, but takes a part in filament formation.
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However, myosin is directly involved in muscle contraction, using the chemical energy
produced by ATP hydrolysis. Myosins are classified into eighteen different classes,
though all the skeletal and obliquely striated muscle myosins belong to type 1l (Foth
et al. 2006). Myosin is composed of two heavy chains of approximately 200 kDa and
four light chains of approximately 20 kDa (Craig and Woodhead 2006). A globular head
of molecule is called subfragment-1 (S-1), containing and N-terminal half of the heavy
chain together with light chain subunits of approximately 20 kDa. Actin binding and
ATP binding sites are also located in this domain. The fibrous part is referred to as a
rod, consisting of a C-terminal half of the heavy chain alone. N- and C-terminal sides of
the rod are called subfargment-2 (S-2) and light meromyosin (LMM), respectively. The
rod portion forms a coiled-coil structure composed of two helices, which enables forming
a thick filament under physiological conditions. In most cases, the properties of myosin
are the major determinant for the stability of meat against heat and frozen storage.
Toughness and water-holding capacity of meat are also greatly ascribed to the properties
of the major proteins. For better understanding the properties of muscle, it is essential
to characterize the major protein component, myosin.

Myofibrillar proteins including myosin and tropomyosin from fish and shellfish
are generally less stable than the counterparts of higher vertebrates (Ogawa et al. 1993,
Higuchi et al. 2002, Paredi et al. 2002, Li et al. 2003, Huang and Ochiai 2005). Myosin
is also a very important factor for gel formation of fish meat (kamaboko) (Satoh et al.
2006). Myofibrillar (myosin) ATPase activity is considered to be a good quality indicator
of fish meat paste (surimi) (Katoh et al. 1979). On the other hand, tropomyosin stabilizes
actin filament and regulates muscle contraction (Yu and Ono 2006). Sequence data are
available for molluscan myosin heavy chain and tropomyosin, while very scarce data
are available for paramyosin. The rod portion of myosin has a coiled-coil structure
composed of two a-helices (Root et al. 2006), and this is also true for tropomyosin,
which has this structure throughout the entire molecule. The coiled-coil is considered to
function as molecular motors propelled by electrostatic energy of ions (Jarosch 2005).
Such unique structure makes it possible to characterize the structures of proteins, because
the changes of a-helical content through thermal treatment or in the presence of
denaturants can be monitored quite easily by circular dichroism analysis.

So far, most of the studies on molluscan muscle proteins have been focused on
Ca?*-regulated muscle contraction (Szent-Gyorgyi et al. 1999, Azzu et al. 2006), because
these myosins are special in that the direct binding of Ca?* to myosin light chain subunit
regulates contraction. Primary structures have been revealed for some myosins and
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tropomyosins (Matulef et al. 1998, Janes et al. 2000, Fujinoki et al. 2006), and collagen
(Morales et al. 2000). In addition, invertebrate tropomyosins have also been identified
as major allergens (Nakamura et al. 2005, Motoyama et al. 2006, Zhang et al. 2006).
A few studies have dealt with the changes of biochemical characteristics of muscle
proteins (Khaitlina et al. 1999, Hatzisisis et al. 2000, Inoue and et al. 2004, Kasamatsu
et al. 2004).

In the present study, attempts were made to characterize the muscles from several
molluscan species, taking the two representative muscle proteins, myosin heavy chain
and tropomyosin as the markers for thermal stability of coiled-coil structure. These
properties were discussed in relation with their amino acid sequences.

Materials and Methods

Live specimens of Japanese common squid Todarodes pacificus, Ommastrephidae,
and common octopus Octopus vulgaris, Octopodidae, were purchased at a local wholesale
market, immediately frozen with dry ice and transported to the laboratory. They were
kept at -80°C until used. Tropomyosin was isolated from the mantle muscle of T. pacificus
and O. vulgaris. The acetone-dried muscle prepared according to the conventional method
was extracted with 10 volumes of 1 M KCI. The supernatant obtained was subjected to
isoelectric precipitation of tropomyosin by adjusting the pH to 4.5 by titrating
0.1 M HCI. Tropomyosin was further purified by ammonium sulfate fractionation
between 40 ~ 50% saturation fractions. Protein concentration was determined by biuret
method. DSC was performed using a microcalorimeter (model VP-DSC, MicroCal,
Northampton, MA, USA) on the purified tropomyosin in a medium consisting of 10 mM
sodium phosphate (pH 7.0), 0.1 M KCI, 1 mM dithiothreitol (DTT) and 0.01% NaN, .
The temperature range was from 5 to 80 °C. The increment of temperature was set to at
1°C/min. Protein concentration was in the range from 1.0-1.5 mg/mL. DSC data were
analyzed for determination of melting temperature (Tm) using a software package Origin
developed by MicroCal. Amino acid sequences of myosin heavy chain and tropomyosin
were aligned with the software ClustalW. Phylogenetic tree was drawn on the basis of
the amino acid sequences of a-tropomyosin using the neighbor-joining method.

Results and Discussion
Characterization of cephalopod myosins

Amino acid sequences of myosin heavy chain were compared between longfin inshore
squid and bay scallop (Fig. 1).
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Figure 1. Alignment of the amino acid sequences of squid and scallop myosin heavy chains. The
sequence data of longfin inshore squid Loligo pealeii (044934) and bay scallop Aequipecten irradians
(P24733) were aligned by Clustal W. The dentical residues are shown by asterisks, the conservative
and semi- conservative replacements are shown by colons and semicolons. Gaps are indicated by
hyphens. The residues consisting of the S1 and light meromyosin (LMM) regions are in black letters,
while those of S2 region are in gray. ATP binding sites are underlined, whereas actin binding sites are in
gray and underlined. The light chain binding sites are italicized. The assembly competent domain close
to the N terminus is underlined. The skip residues are bold-faced. Symbols used; *, identical residues; :
, conservative replacements; semi-conservative replacements, in comparison with the squid myosin heavy
chain sequence.
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In the figure, S-2 region connecting S-1 and LMM regions is shown by gray
letters. Gaps were found in the head region of scallop heavy chain, while the tail of
squid myosin heavy chain was a little shorter compared to scallop myosin. The sequence
identity was about 87% throughout the molecule, though the identity varied among the
regions of the molecule. In the rod regions of both myosins, four skip residues (as
shown by bold-faced letters in the figure), which could perturb the regular coiled-coil
structures, were specified.

The structure of the head portion (S-1) of myosin is very complicated. It is thus
almost impossible to draw conclusive remarks on the sequence-stability relationship
only by comparison of amino acid sequence. However, as described above, the rod
portion of molluscan myosins give rise to characteristic sequence, suggesting the
instability of this portion. It is established that the rod portion is involved in gel formation
of meat, especially for the case of fish (Fukushima et al. 2003).

Myosin itself exists in a large amount in muscle, and thus is easily prepared.
However, biochemical and thermodynamic data obtained from myosin are very
complicated because this protein is a large molecule (~500 kDa) and is composed of
quite different parts, namely, S-1 and rod. However, it requires a lot of labor to prepare
S-1 or rod, because it is only possible after enzymatic cleavage of these portions. This
is a drawback to the detailed study on structure-stability relationship of the myosin
molecule. In contrast, it is much easier to prepare tropomyosin.

Characterization of cephalopod tropomyosins

As shown in Fig. 2A, tropom-yosin molecule is fibrous, forming a-helical coiled-
coil structure almost
throughout the entire
molecule. The
schematic diagram of
the cross section of the
coiled-coil structure is
shown in Fig. 2B. In
general, at the a and d  Figure 2A. Tertiary structure of tropomyosin molecule (PDB 2tma)
positions, hydroph-
obic residues tend to occupy to form a hydrophobic core to stabilize the coiled-coil (so-
called “a heptad repeat rule”). On the other hand, salt bridges tend to be formed between
the e and g positions. As long as the tropomyosins so far studied are concerned, there
are many exceptions to the localization of such amino acid residues, suggesting that the
coiled-coil structure of tropomyosin is loosened at several regions.
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Tonic interaction

Tonic interaction

Figure 2B. The schematic diagram of the cross - section of coiled-coil structure

It is considered to be necessary for the function of this protein, namely, regulation
of myosin-actin interaction during muscle contraction. In connection with this, molluscan
tropomyosins tend to be extracted in water-soluble fraction, unlike vertebrate counterpart
(Motoyama et al. 2006). The amino acid sequences of four molluscan tropomyosins
were aligned with those from other sources (Fig. 3).

The organisms included Japanese common squid T. pacificus, common octopus
O. vulgaris, and Japanese abalone Haliotis diversicolor (molluscs), lobster Homarus
americanus, crab Portunus sanguinolentus, and prawn Marsupenaeus japonicus,
(arthropods), amphioxus Branchiostoma belcheri (cephalochordate), white croaker
Pennahia argentata and frog Rana temporaria (vertebrates). The sequences were headed
with the heptad positions of the coiled-coil (a ~ g) corresponding to those in Fig. 2B.
From Fig. 3, it is clear that there are so many amino acid replacements between
tropomyosins from different phyla, though the heptad repeat rule is roughly true for all
tropomyosins. Interestingly, the N-terminal eight residues are conserved for all
tropomyosins, while the C-termini are not conserved so much.
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Figure 3. Alignment of amino acid sequences of four molluscan tropomyosins. Squid, Japanese
common squid Todarodes pacificus (accession #Q2V0V2); octopus, common octopus
(#Q2V0V0), Japanese abalone, Haliotis diversicolor (#Q9GZ71), lobster, Homarus americanus
(#044119), crab, blue crab Portunus sanguinolentus (#A1YYV6), prawn, Penaeus japonicus
(#A2V731), amphioxus, Branchiostoma belcheri (#Q9NDSO), croaker, white croaker Pennahia
argentata (#AB045645), frog, Rana temporaria (#P13105). The positions occupied with unique
residues are boldfaced. Refer to the legend of Fig. 1 for the symbols used.
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Based on the amino acid sequences of these tropomyosins, a phylogenetic tree was
drawn by the neighbor-joining method (Fig. 4).

~-MoHtuscs
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Frill N Vertebrates o ----_
. -

II Mantis crab
| ranuT Humam 1
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Cracier ,'
Potlack ;

Cradb

Amphiozus

Figure 4. Unrooted phy-logenetic tree drawn based on the amino acid sequences of a tropo-
myosins by neighbor-joining method. The clusters of vertebrates, arthropods and molluscs are
contained in circles separately. Squid, Japanese common squid Todarodes pacificus (accession
#Q2V0V2); octopus, common octopus (#Q2V0V0), abalone, Haliotis diversicolor (#Q9GZ71),
lobster, Homarus americanus (#044119), crab, Portunus sanguinolentus (#A1YYV6), prawn,
Penaeus japonicus (#A2V731), amphioxus, Branchiostoma belcheri (#Q9NDSO0), croaker,
Pennahia argentata (#AB045645), frog, (#P13105) Rana temporaria.

As a result, tropomyosins from different phyla formed clear clusters. It was sugge-
sted that molluscan tropomyosins have special structure, though it is not possible to
predict the tertiary structure at present, because there is no proper template available.
However, such characteristics might be related to the allergenicity of these tropomyosins.

Two species of molluscs, namely, common squid Todarodes pacificus and common
octopus Octopus vulgaris were used for the preparation of tropomyosin. The sequence
identities of these proteins were found to be higher than 70%. The parameter of thermal
stability and DSC patterns were compared as shown in Fig 5.
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Figure 5. DSC patterns of squid T. pacificus tropomyosin. A, first scan; B, second scan. DSC
analyses were performed in a medium consisting of 10 mM sodium phosphate (pH 7.0),
0.1 M KCI, 1 mM DTT, 0.01% NaN,. The temperature range was set to 5-80°C. The increment
of temperature was set at 1°C/min.

Squid tropomyosin showed a slightly higher transition temperature (Tm) of 47.0°C,
than the octopus counterpart, whose Tm value was 44.5°C. The second scan of squid
tropomyosin by DSC suggested that this protein was refolded even after the first thermal
treatment which caused structure perturbation, though the endothermic peak at the lower
temperature was not recognized in the second scan. Preliminary experiments showed
that tropomyosins from scallop adductor and smooth muscles showed clearly different
stability, with the Tm values being 29.4 and 35.8°C, respectively. Because smooth muscle
(catch muscle) of the adductor has unique composition of proteins (Perreault-Micale
and Szent-Gyorgyi 1996, Shelud’ko et al. 2001), tropomyosins from these two muscles
seem to have adapted to respective physiological conditions.

These results suggest that molluscan muscle proteins are relatively stable.
Incidentally, the Tm values of fish tropomyosins are in the range of 26.4 ~ 46.5°C (Huang
and Ochiai 2005). Because molluscs are ectotherms, thus the stability of their proteins
is greatly affected by the environmental temperature. Therefore, the proteins from cold-
water inhabiting species are considered to be less stable compared to those from warm-
water species. However, the stability of each protein component is to be examined for
further discussion. So far several reports suggest that tropomyosin is a suitable model
for the relationship between sequence, structure and function (Kluwe et al. 1995, Perry
2001, Miura-Yokota et al. 2005). This seems also to be true for molluscan counterparts.

The difference between the coiled-coils from myosin heavy chains and
tropomyosins is that the former forms side-by-side filament under physiological
condition, while the latter forms only head-to-tail polymerized filament and is soluble
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even in water. The amino acid residues located at the surface of these proteins cause
such a difference. Thermal stability is considered to depend on the stability of the
hydrophobic core of these proteins.

It is very important to handle myosin during storage and processing of meat,
because denaturation of this protein causes deterioration of meat as observed in decrease
in solubility and water holding capacity. Filament formation ability largely affects such
changes. To know the thermodynamic properties of such filamentous proteins is thus
considered to be essential to optimize storage and processing conditions. Above all, the
coiled-coil regions are excellent tools to monitor the structural changes of proteins.

Conclusion

Myosin heavy chain and tropomyosin from molluscan muscle, especially those
from cephalopods were characterized based on their amino acid sequence and thermal
denaturation profile. The sequence alignment of these proteins revealed the uniqueness
of molluscan proteins. The coiled-coil regions of these proteins are excellent markers
for their thermal stability. It could be helpful for optimizing the storage and processing
conditions of molluscs.
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