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Abstract

Schaefer model is one of the most popularly used surplus production models in fisheries to estimate maximum
sustainable yield and the corresponding optimum fishing effort. When we employ nonlinear estimation procedures for
estimating the parameters, high parameter correlations are generally observed, which is undesirable. Moreover, catch-
effort fisheries data are collected during a certain time period and hence data points are generally correlated among
themselves. In the present paper, utility of expected value parameters to make parameter correlations low is highlighted.
An explicit expression giving catch-effort relationship for Schaefer model with autoregressive of order one using
expected value parameters is also developed. This is illustrated with an example, considering the serially correlated
catch-effort data observed from Gobindsagar reservoir.

Introduction

The abundance of fish stock for a particular water body is a function of interactions between
environmental factors and the fish stock properties. The stock tends to stabilize at a particular set of
environmental conditions (Gulland, 1977). When the surplus production is not harvested, at the
level of maximum fish stock size the addition of recruitment and growth to the stock is just
sufficient to compensate for natural mortality and hence, surplus production will be equal to zero
(Haddon, 2001). This implies that fishing plans can be expressed in terms of surplus production;
they are very flexible and have different variations. Schaefer’s surplus production model (Schaefer,
1954) and its extensions dominated research in production models for fisheries. The reason for their
widespread use is that, these models have modest data requirements and the input data for these
models are a simple time series of catch and effort from fishery, which is readily available for most
fisheries. Further, when we are dealing with catch-effort fisheries data, which are observed over
continuous time periods, the data points are generally correlated among themselves. Also, Prajneshu
and Ravichandran (2003); Prajneshu and Kandala (2005) emphasized the importance of
reparameterization of the parameters for fitting of nonlinear surplus production models in fisheries
to reduce large correlations among the parameter estimates. Thus, by examining the presence of
autocorrelation in the observations, in the present study a method of fitting a Schaefer model with
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serially correlated error structure using expected value parameters is proposed which is illustrated
with an example, considering the catch-effort data observed from Gobindsagar reservoir, India.

Material and Methods

A surplus production model, as described by Schaefer (1954), facilitates estimation of MSY
and the optimum fishing effort for harvesting the MSY (Epsy ). The equilibrium Schaefer model is

given by

c-Kke(1-%) e (1)

where Ciand E; are catch and effort at time t; r is the intrinsic growth rate; K is the carrying

capacity and correspondingly, MSY = ”% and Eygy = %

As we are dealing with time-series data, it is, therefore, required to check for the validity of
the above model by examining the independency assumption of error term. The Durbin-Watson test
can be employed for the said purpose and is based on the assumption that the errors (&;’s) follow

autoregressive of order one. The corresponding test statistic ‘d’ is defined as

A statistic ‘d’ value ranges between 0 and 4. A value of ‘d’ near 2 indicates little
autocorrelation; a value toward 0 indicates positive autocorrelation while a value toward 4 indicates
negative autocorrelation.

To handle a situation when there is an evidence for the presence of autocorrelation, an
autoregressive (AR) error term ¢, of order one is added to the right hand side of above equation (1):

g=Dg_g+ug; [O<1, e (3)
where u;’s are independently and normally distributed with zero mean and constant variance and

@ denotes the autoregressive parameter. Incorporating an AR(1) additive error structure, the
Schaefer model becomes:
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Ci = KEt(l— E%j +Dg g +U. e (4)

Partial Reparameterization of Schaefer Model with AR(1)

When we deal with nonlinear estimation procedures for estimating the parameters, high
parameter correlation may be detected which is indeed undesirable. Ratkowsky (1990) suggested
using expected-value parameters for choosing the values of the explanatory variable in such a way
so as to make the parameter correlations low. Expected value-parameters should fall within the
observed range of the data and not correspond to asymptotes or extrapolations outside the data range
because outside the range of the observed data is less efficient. Further, expected-value parameters
can be advantageously used, as they are nearly unbiased, normally distributed and with minimum
variance estimators.

To be convenient for mathematical notations, the above equation (4) is rewritten in the
following form:

C= KE(1— '%)+ 1 (5)

It may not always be necessary to replace all the parameters of a model by expected-value
parameters; however, only the offending parameters can be replaced. Thus, to obtain expected-value
parameters for r and K of the above equation (5), we need to choose values E; and E;, of the
explanatory variable E, within the observed range of E and correspondingly the values of ¢; and ¢,

of € are to be selected. Then, we get the expected values from equation (5) as follows:

C = KEl(l— E%j +Dg, e (6)
and
C, = KEz(l— E%j +®'e,. e (7

From equation (6), K can be obtained as:

G-y
= EG-E) ®

Again from equation (7), the expression for r is given as:
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Substituting the expression for K from equation (8) in equation (9) and solving, we get

[cl ~®'g EZ - (C, —qa'gz)Ef]
]

------------------ (10)
(C,-@ 81) —(C, - @'ey )Ey
Also, equations (8) and (10) provide
K = |(C1 _(Dlgl)E% — (CZ _(D,*C'Z)El2 | __________________ (11)

E.E,(E, —Ey)

Since the parameters r and K are non-negative values, the following conditions should be

Using equations (10) and (11), equation (5) becomes,

C =[{EE,(E, —E)C, — @'g;)— EE4(E; —E)C, — D' )l E4E,(Ep — Ey )|+ D - (12)
where @’ is the estimated value of @ obtained by fitting the above equation (4).

Now, this process has eliminated the original parameters r and K, replacing these with new
expected-value parameters. Different parameterizations of the same basic model will produce the
same goodness-of-fit and the same fitted values. However, they may differ greatly in their
estimation behavior (Ratkowsky, 1990). The unknown parameters and autoregressive parameter in
the above nonlinear models are estimated using Levenberg-Marquardt method (Seber and Wild,
1989).

Measures of Model Adequacy
It is generally assessed by the following statistics:

(i) Root Mean Square Error,
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N |-

Yl -¢f
RMSE = Hf ,

(it) Mean Absolute Error,

MAE=Y  t=12..n,

where n is the number of observations; ét is the predicted fish catch at time t.

The better fitted-model will have the lower value of the above statistics. Further, residual
analysis is required to check the assumptions made for the model to be developed. Thus,
independence assumption of the residuals needs to be tested. To test the independence assumption
of residuals run test procedure is available in the literature (Ratkowsky, 1990). However, the
normality assumption is not so stringent for selecting nonlinear models because their residuals may
not follow normal distribution.

To illustrate the above methodology, data on fishing effort and its corresponding catch in
Gobindsagar reservoir during 1974-75 to 1989-90 observed by Kaushal et al. (2006) is considered.
The Statistical Package for Social Sciences (SPSS) 12.0 version has been used for fitting of the
above models. Different sets of initial parameter values were tried to meet the global convergence
criterion for best fitting of the nonlinear models.

Results and Discussion

The MSY and its corresponding optimum efforts of different forms of Schaefer model are
computed and the results of the fitted models are presented in Table 1. The MSY value (in tons)
estimated by Schaefer model is 808 and its corresponding optimum efforts (number of gill nets) is

1,406 respectively. The randomness assumption does not follow since the run test |Z| value (2.303)
is greater than 1.96 of normal distribution at 5% level of significance. However, the normality
assumption regarding the error term in catch is met for the model since Shapiro-Wilk test p-value of
the fitted model is 0.123. Further, Durbin-Watson statistic has been calculated and the statistic value

is toward zero and hence positive autocorrelation is suspected. The Schaefer model is refitted
incorporating the AR(1) error structure and the results are again shown in Table 1. Further, run test

and Shapiro-Wilk test are employed to the residuals of catch. Here, the run test |Z| value and
Shapiro-Wilk test p-value of the refitted model indicate that both the randomness and normality



202 Asian Fisheries Science 24 (2011):197-208

assumptions are satisfied. The Durbin-Watson statistic value calculated from the refitted model is
very closed to 2 i.e. the presence of autocorrelation is negligible. Also, a significant improvement in
RMSE and MAE values is seen in the refitted model as compared to the original Schaefer model.
However, the correlation matrix given in Table 2 shows that the extreme value of correlation
coefficient between parameters ‘r” and ‘K’ i.e. p(r, K)=—0.979. It indicates that the two parameters

are not estimated independently, while the values of p(r,®) and p(K,d) are acceptable. For getting

a possible solution to this, it has been attempted to fit equation (12), which is derived from equation
(5) with expected-value parameters for ‘r’ and ‘K’, since they are the possible offending parameters
of the model, while the parameter @, is being kept unchanged.

Table 1. Summary statistics for fitting of different forms of Schaefer model to catch-effort data observed from
Gobindsagar reservoir.

Schaefer Schaefer Model with  Reparameterization of Schaefer

Model AR(1) Model with AR(1)
Parameters
K 1.149 1.449 )
*(0.425) (0.379)
; 2811.288 1758.330 )
(3041.811) (669.831)
C - } 530.661
1 (46.355)
C i i 735.204
2 (56.723)
® i 0.630 0.630
(0.247) (0.247)
Statistics
MSY (in tons) 808 637 637
Emsy (no. of gill nets) 1406 879 879
Durbin-Watson statistic 0.843 1.753 1.753
Model adequacy
RMSE 140.292 114.455 114.455
MAE 123.802 96.767 96.767
Residual analysis
Run test (|Z]) 2.303 0.259 0.259
Shapiro-Wilk test 0.123 0.231 0.231

p-value
*The values given in parentheses are the corresponding asymptotic standard errors.
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A pair E;=594 and E,=813 correspondingly, & =—-62.59 and ¢, =161.41, give the best result in

terms of least correlation coefficient and the required conditions for ‘r’ and ‘K’ to be positive are
also satisfied.

Table 2. Asymptotic correlation matrix of the parameter estimates after fitting of Schaefer model with AR(1)

Parameter(s) K r D
K 1.000
r -0.979 1.000
)] 0.311 -0.305 1.000

In practice, E; and E; are being chosen in such a way that they are not close to each other.
The corresponding values of C i.e., C;=735 and C,=811 are taken as initial values for computation
of the final estimates of the parameters C; and C,. The parameter estimates are presented in Table 1.
Now, the correlation coefficients are well acceptable as the correlation coefficients between the
parameters are very low as presented in Table 3. Thus, we can say that the parameters are estimated
nearly independently. The values of RMSE and MAE calculated from the original model of
equation (4) and from the transformed model with the expected value parameters of equation (12)
have remained the same as given in Table 1. The graph of fitted model along with observed catch is
also depicted in Fig 1. A perusal of the estimates of MSY for different forms of Schaefer model
reveal that a simple Schaefer model has slightly over-estimated the MSY and optimum effort values
as compared to the values of MSY (637 tons) and optimum effort (879 number of gill nets)
estimated by the Schaefer model with AR(1).

Table 3. Asymptotic correlation matrix of the parameter estimates after fitting of Schaefer model with AR(1)
using expected-value parameters.

Parameter(s) C, C, ()
C; 1.000
C, -0.215 1.000

(0)) 0.270 -0.209 1.000
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Fig. 1. Fitted Schaefer model with AR(1) to the dataset of catch-effort observed from Gobindsagar reservoir using
expected-value parameters.
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ANNEXURE
Derivation for Partial Reparameterization of Schaefer Model with AR (1):

Schaefer model with autoregressive of order one is of the following form:

C=KEQL-B/)r0e e (i)

To obtain expected-value parameters for ‘r’ and ‘K’ of the above equation (i), the values E;
and E, of the explanatory variable E, within the observed range of E are to be chosen and
correspondingly, the values of ¢; and ¢, of . Then, we can get the expected values from equation
(i) as follows:

C, - KEl(l— &/ ) Ly, e (ii)

and

C, - KEz(l— E%)+CI)'82. ------------------ (iii)

where @' is the estimated value of @ obtained by fitting the Schaefer model with AR(1) before
reparameterization.

From equation (ii), we get

_CG-oey -
"= Ey(r—Ey) )
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Again from equation (iii), we have

[1_ Ej _(C,—'sy)

r KE,
LB, (C-wey)
r KE,
=r= = —= e v)
1— (CZ - 82)
KE,
Substituting the expression for K from equation (iv) in equation (v), we get
r= =
1— (CZ — @’82)
EZ[(Cl - q"gl)r}
(r-E1)E
e E5[(C,—@'s))r/(r—Ey ), |

Eo[(Cy— ey )r/(r — By JEq |- (C, — @'e,)

N {(Cl —®'gy JrEp —(Cp — e, N1 - El)El} _ (-2 )rES
(r-E)Es (r-E)Es

= (Cy—®'ey JE, —(C, — e, \r —Ey JE; —(C — D'y JES =0
= 1[(C, - D'e1 JE, = (C, — D'ey )Ey | = [(Cl ~@'g; JE5 —(C, - D'ey JEF ]

[ ~D'gy JE5 - (C, - D', E ]
(C,-@ 81) —(C, - @'ey )E ]

Similarly, substituting the expression for r from equation (vi) in equation (iv), we get

K — (C,- q)'gl){(cl ~®'ey 5 —(Co - q"gz)Elz}
Eq (CL—D'e1)E, —(Cy - D'ey)Ey
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{(Cl —®'gy )E5 —(Cp — D'e, S }
, , -E
(CL-@'ey)E; —(Cy, - D'ey )Ey

K= (C - (D’gl){(cl —D'ey JE5 —(Cp - CD'Sz)ElZ}
= (CL—D'e B, —(Cp - D'y ),

{ (CL—®'s)Ep —(Cp — D'ep )y }
(Cy— @'y JES — (Cp — @'e, JET — (Cy — @'eg JELE, +(Cp — e JET

Ko (C, —q"gl){ (C - @'y JE3 —(Cp - Ve, JET }
Ey (CL—@'ey )ES — (Cy — @'y )E4E,
K= (C - CD'Sl)l(Cl —P'g; JE5 —(C, — P'ep JEF |
(Ci- CD'Sl)(ElEg ~E{E, )
K= |(C1 B (D’gl)E% B (CZ B (D,SZ)EIZ | __________________ (VII)

EiE»(Ey —Ep)

As the parameters r and K are positive values, the following conditions should be satisfied:
(1) (Cl —(D’Sl)EZ > (C2 —CD'Sz)El and (2) E2 > El'

Now, using equations (vi) and (vii) in equation (i), we get

Co {(Cl — @'ey JE5 —(Cp — P'ep JEF }E
E1E,(E,E;)

1- E + d¢

{(Cl ~®'g JE5 - (Cy - q"gz)Elz}
(CL—D'e; )E, —(Cp — D', )E;

=C=

{(Cl ~D'g) )E5 —(Cy — D'ey JEL }E
E1E(E,E;)
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—(Cl — @'g; JE5 —(Cy — @'e, JEf —E{(C, — @'y JE, —(C, —D'ey )Ey | + P
(C,—@'ey )E5 —(C, — D'ey )ES

c- (Cy— @'y JEE3 —(C, — D'ep JEE? — (C — D'e) JE2E, — (Cp — @'s, JEZE, \ Do
B\ —ELE,
(CL—@'e) JEE,(E, —E)—(Co — e, JEEy (- E) | | o
E,E,(E, - )

=C-=

= C = [{EE2(E; —ENC, —@'e;)—EEy(Ey ~E)C, — @'ep )}/ E1E, (B, — By )]+ e

Thus, the original parameters ‘r’ and ‘K’ are replaced by new parameters which by virtue of
being expected-value parameters. Although the above expressions are more cumbersome in
appearance than the original expressions, parameterizations with expected-value parameters offer
many advantages.
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