

# **The Environmental Impact of Marine Shrimp Farming Effluents and Carrying Capacity Estimation At Kung Krabaen Bay, Eastern Thailand**

**S. TOOKWINAS**

*Marine Shrimp Research and Development Institute  
Department of Fisheries  
Chatuchak, Bangkok 10900  
Thailand*

## **Abstract**

Water quality parameters in marine shrimp farms around Kung Krabaen Bay were surveyed from 1989-1994. The average transparency was  $0.425 \text{ m} \pm 0.024$  in shrimp ponds,  $0.680 \text{ m} \pm 0.012$  in the water supply canal,  $1.008 \text{ m} \pm 0.110$  in Kung Krabaen Bay and  $1.635 \text{ m} \pm 0.530$  in the surrounding coastal areas. Total ammonia-nitrogen was  $0.120 \text{ mg/l} \pm 0.012$  in shrimp ponds,  $0.032 \text{ mg/l} \pm 0.002$  in the water supply canal,  $0.017 \text{ mg/l} \pm 0.001$  in the bay,  $0.012 \text{ mg/l} \pm 0.001$  in coastal waters and  $0.401 \text{ mg/l} \pm 0.002$  in discharge canals. Total bacterial plate count was  $19,003 \text{ CFU/ml} \pm 15.4$  in the bay and  $23,801 \text{ CFU/ml} \pm 17.33$  in the discharge canal. Total area of the farms engaged in intensive marine shrimp farming at Kung Krabaen Bay was around 142.76 ha. The total effluent discharge loading into the bay was around 67,400 ton/ha/crop. The BOD and ammonia loading were 699.60 kg/ha/crop and 12.81 kg/ha/crop, respectively. Carrying capacity of Kung Krabaen Bay, which has a total water surface area of 640 ha, was estimated using a mass balance model. Ammonia-nitrogen in receiving water or in the bay was set as the optimum safe concentration for sea water standard at 0.1 mg/l. The carrying capacity for intensive marine shrimp farming loading at Kung Krabaen Bay can be allowed upto 543.93 ha. The water balance model for carrying capacity and water quality prediction in the bay were discussed in detail.

## Introduction

Kung Krabaen Bay is located at latitude 12°36'-12°33'N and longitude 101°53'E in the province of Chanthaburi, eastern Thailand. The bay is surrounded by a 500-800 m wide band of mangrove forest (Raine 1992) (Fig. 1). Intensive marine shrimp farming of *Peneaus monodon* goes on around the bay behind the mangrove area. The cultured area is approximately 142.76 ha, consisting of 348 ponds (Leeruksakiat 1995).

Stapornvanit (1993) studied the environmental impact of the effluents (discharged water and accumulated sediment) from intensive shrimp farming on Kung Krabaen Bay in 1993. Farm practices were the main factor that affected the quality and quantity of effluents. Effluent quality was extremely poor with high concentrations of ammonia and un-ionized ammonia during harvesting of shrimp because of the disturbance to the sediment; impacts on water quality

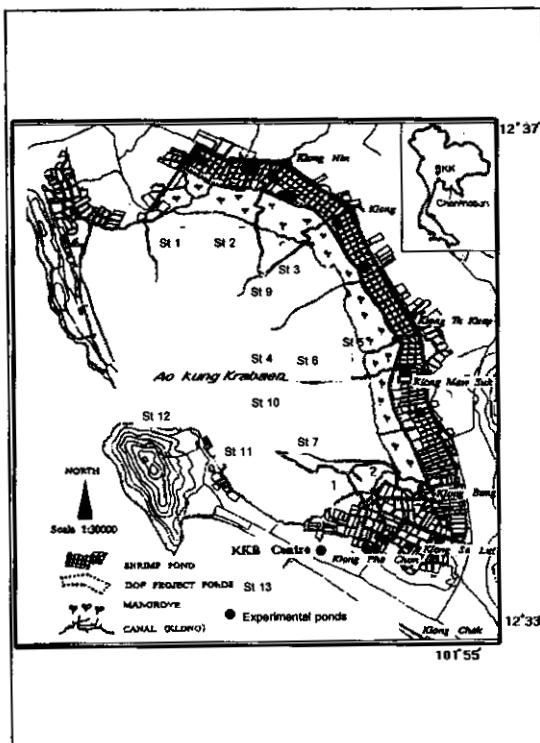



Fig. 1. System of shrimp ponds and canals around Kung Krabaen Bay, and experimental ponds in eastern Thailand.

in the bay were most serious during harvesting. During normal farming operations, the combination of high flushing and low nutrient loadings appeared unlikely to cause significant eutrophication of Kung Krabaen Bay.

Tookwinas (1995) reported on the quality and quantity of discharged water from marine shrimp farms at Kung Krabaen Bay during the first crop of 1992. The total effluent discharge loading into Kung Krabaen Bay was around 67,400 tons/ha/crop or 134,800 tons/ha/yr.  $BOD_5^{20}$  loading was around 6,735.63 tons/yr while total ammonia-nitrogen loading was 4.205 kg/yr.

The intensive marine shrimp farms are located around the bay in the unproductive mangrove areas. The majority (64) of the ponds, with an area of 97.88 ha, fall under the "Royal Development Project" while the remaining 84 ponds, consisting of 44.88 ha, are privately-owned. Total area of the shrimp farms, including supply and drainage canals, were about 180 ha. The "Royal Development Project" ponds were of similar construction and averaged an area of about 2,500 m<sup>2</sup>. The ponds sloped toward the outlet gate, which in turn is connected to public canals. Most of these cultured ponds began shrimp farming operations in 1981 (Prasertcharoensul 1992; Stockwell 1991).

Seawater is supplied to the shrimp ponds around Kung Krabaen Bay via supply canals, which are separate from the drainage canals that drain the shrimp pond effluents directly to Kung Krabaen Bay. The water surface area of the bay, which is about 5 km long and 3 km wide, is 15,000,000 m<sup>2</sup> (Dean 1992). Water depth is usually 70-300 cm. in the bay and 60-150 cm in the channels, with the average depth at around 1.85 m (Marumo 1985). Tidal amplitude is about 2 m which means that at low tide up to 80% of the bay consists of exposed flats (Dean 1992). Volume of inflow from the mouth of the

bay is  $135.01 \times 10^5 \text{ m}^3/12\text{hr}$ . and water volume at low level water is  $22.59 \times 10^5 \text{ m}^3$  (Sasaki and Inoue 1985). Sasaki and Inoue (1985) reported that the tidal of Kung Krabaen Bay is diurnal tide, and described that 86% of the bay waters at low levels is replaced by open sea waters in one tidal cycle. Thus, tidal flushing of the bay is extensive, with an almost complete change of water during each tidal cycle which occurs once every 24 hours (Dean 1992). The sea water can sufficiently fill the canal system in intensive marine shrimp farms for only about one week during the spring tides. For the rest of the time, during the neap tide period, there is little water in the canals to serve the ponds.

In this study, the water quality of Kung Krabaen Bay (KKB complex, the shrimp farm effluent, Kung Krabaen Bay's and coastal water) were investigated. The carrying capacity for an intensive marine shrimp farm was estimated using mass balance model. This model would be discussed and compared to water quality prediction.

## Materials and Methods

### **Data collection**

Water samples from Kung Krabaen Bay, from the marine shrimp farm areas, water supply canals, shrimp ponds and drainage canals, and from coastal waters were collected monthly for water quality analysis from 1989 to 1994.

Water depth, water current and water samples for total ammonia-nitrogen analysis were measured and collected at the mouth of Kung Krabaen Bay every hour for 24 hours in June of 1994 to estimate the bay's carrying capacity.

### **Surveyed Station**

Seventeen surveyed stations were set for water sample collection monthly from 1989 to 1994 (Figure 1). These are:

- Station 0 Shrimp ponds (St 00) (19 ponds)
- Station 1 Water supply canals to shrimp ponds (St01-St08)
- Station 2 Kung Krabaen Bay (St09-St11)
- Station 3 Mouth of Kung Krabaen Bay (St12)
- Station 4 Coastal waters along Kung Krabaen Bay
- Station 5 Drainage canals from shrimp ponds (St14-16)

### **Water Analysis**

Water samples were analyzed using the following methods:

Transparency was measured by a Secchi disc (Tookwinas 1985). Salinity was checked by a refractosalinometer (Atago), pH by a laboratory pH meter (Jenco; Model 671). Dissolved oxygen, biochemical oxygen demand ( $\text{BOD}_5^{20}$ ), alkalinity, suspended solid and orthophosphate were analyzed according to APHA (1989). Silicate was analyzed by Strickland and Parsons (1972). Total

ammonia-nitrogen was analyzed according to the phenol-hypochlorite method (Grasshoff 1974). However, the calibration curve was done using the unit of mg/l (ppm). Nitrite-nitrogen was analyzed according to Grasshoff (1974). Total alkalinity was analyzed according to APHA (1989). Total organic carbon (TOC) was analyzed by Astro 2001 system 2 Total Organic Carbon Analyzer (KKB, 1992). Current was measured according to Current meter Model CM-2SA, Toho Dentan Co.Ltd. Total bacterial plate counts (TPC) and Vibrio counts (VC) were analyzed using the method of Ushiyama (1978).

### ***Data Analysis***

(1) Multiple regression among parameters and year were calculated using SAS version 6.0 (SAS 1990) at 95% significance level.

(2) Carrying capacity estimation by the concept of mass balance model (Tchobanoglous 1990 and Predalumpaburt 1996) was as follows;

$$\text{Carrying Capacity (C)} = \frac{\text{Net ammonia loading (NAL)}}{\text{Ammonia loading (AL)}}$$

$$\text{MAO-AO} = \frac{\text{Max. ammonia outflow (MAO)}}{\text{AL}} - \frac{\text{Ammonia outflow (AO)}}{\text{AL}}$$

$$\text{R.MAI-AO} = \frac{\text{Removal rate (R)}}{\text{AL}} \times \frac{\text{Max. ammonia inflow(MAI)-AO}}{\text{AL}}$$

$$\text{R} = \frac{\text{Ammonia outflow(AO)}}{\text{Ammonia inflow (AI)}}$$

$$\text{C} = \frac{\text{R.MAI-AO}}{\text{AL}}$$

$$\text{where ammonia outflow (AO)} = \sum_{i=1}^n \frac{A_j(M^2)V_j(m/s)3600(s/h)C_j(mg/l)}{1000 g \cdot kg^{-1}}$$

$j$  = low tide level at, 1<sup>st</sup> to  $n^{\text{th}}$  hour

$A_j$  = cross section area of KKB's mouth at  $j$  hour ( $m^2$ )

$V_j$  = current at  $j$  hour (m/s)

$C_j$  = ammonia-nitrogen concentration at  $j$  hour (mg/l)

$$\text{ammonia inflow (AI)} = \sum_{i=1}^n \frac{A_i(m^2)V_i(m/s)3600(s/n)C_i(mg/l)}{1000 g/kg}$$

$i$  = high tide level at 1<sup>st</sup> to  $n^{\text{th}}$  hour.

$A_i$  = cross section area of KKB's mouth at  $i$  hour ( $m^2$ )

$V_i$  = current at  $i$  hour (m/s)

$C_i$  = ammonia-nitrogen concentration at  $i$  hour (mg/L)

$$\text{maximum ammonia inflow (MAI)} = \sum_{i_m=1}^n \frac{A_{i_m}(m^2)V_{i_m}(m/s)3000(s/h)C_{i_m}(mg/L)}{1000 g/kg}$$

$i_m$  = high tide level at 1<sup>st</sup> to  $n^{\text{th}}$  hour

$A_{i_m}$  =  $A_i$

$V_{i_m}$  =  $V_i$

$C_{i_m}$  = Total ammonia-nitrogen concentration at optimum safe level  
= 0.1 mg/L (Chien 1992; Liu 1989; Tookwinas 1985).

## Results

### Water quality

Water quality in shrimp ponds, supply canals, drainage canals, Kung Krabaen Bay and its mouth, and along the coast are shown in Table 1 and Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10. Transparency was  $0.425 \text{ m} \pm 0.024$  in shrimp ponds,  $0.680 \text{ m} \pm 0.012$  in the supply canals,  $1.008 \text{ m} \pm 0.110$  in the bay,  $1.454 \text{ m} \pm 0.23$  at the mouth of the bay and  $1.635 \text{ m} \pm 0.530$  along the coast. Dissolved oxygen above  $6.0 \text{ mg/l}$  was present in every survey station. pH was around seven to eight in every survey station. Total ammonia-nitrogen was in normal condition, except in the drainage canals, which was at a very high  $0.401 \text{ mg/l} \pm 0.002$ .

Biochemical oxygen demand was  $2.447 \text{ mg/l} \pm 0.890$  in the supply canals,  $2.029 \text{ mg/l} \pm 0.730$  in the bay,  $1.895 \text{ mg/l} \pm 0.550$  at the mouth of the bay,  $1.800 \text{ mg/l} \pm 0.430$  along the coast and  $1.797 \text{ mg/l} \pm 0.850$  in drainage canals. Total bacterial plate count was  $12,890 \text{ CFU/ml}$  in the water supply canals,  $19,003 \text{ CFU/ml} \pm 15.4$  in the bay,  $19,789 \text{ CFU/ml} \pm 17.2$  at the mouth of the bay,  $18,527 \text{ CFU/ml} \pm 18.1$  along the coast and  $13,801 \text{ CFU/ml} \pm 17.33$  in the drainage canals.

### Carrying Capacity Estimation

The depth of Kung Krabaen Bay's mouth, the quantity of ammonia nitrogen and the water current were measured every hour for 24 hours. The width of the bay's mouth was calculated following Sasaki and Inoue (1985). Accordingly, the area of Kung Krabaen Bay's mouth was calculated (Table 3). The concept of carrying capacity estimation is done by mass balance model using total ammonia-nitrogen at the optimum safe level of  $0.1 \text{ mg l}^{-1}$  (Chien 1992; Liu 1989; Tookwinas 1985). Ammonia outflow during low tide and ammonia inflow during high tide are calculated in Tables 4 and 5.

$$\text{Total ammonia outflow} = 746.27 \text{ kg} \cdot \text{day}^{-1}$$

$$\text{Total ammonia inflow} = 256.17 \text{ kg} \cdot \text{day}^{-1}$$

$$\begin{aligned} \text{Removing rate (R)} &= \frac{\text{Ammonia outflow}}{\text{Ammonia inflow}} \\ &= \frac{746.27}{256.17} \end{aligned}$$

The optimum safe concentration for total ammonia-nitrogen in receiving water is set as  $0.1 \text{ mg/l}$ . Maximum total ammonia inflow is calculated. The result is presented in Table 6.

$$\text{Maximum total ammonia inflow} = 739.53 \text{ kg} \cdot \text{day}^{-1}$$

Then

$$\begin{aligned} \text{Maximum total ammonia outflow} &= R \times \text{maximum total ammonia inflow} \\ &= 2.9132 \cdot 739.53 \\ &= 2154.40 \text{ kg} \cdot \text{day}^{-1} \end{aligned}$$

Table 1 Average value of water quality at marine shrimp farming area and Kung Kraaben Bay during 1989 to 1994 (P&lt;0.05)

| Station Parameters                   | Shrimp ponds st0          | Water supply st1           | KKB st2                    | Mouth of KKB st3           | Coastal water st4           | Drainage canals st5         |
|--------------------------------------|---------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|
| Transparency (m)                     | 0.425 <sup>a</sup> ±0.024 | 0.680 <sup>b</sup> ±0.012  | 1.008 <sup>bc</sup> ±0.110 | 1.454 <sup>d</sup> ±0.23   | 1.635 <sup>d</sup> ±0.530   |                             |
| Salinity (ppt)                       | 29.50 <sup>a</sup> ±3.04  | 29.99 <sup>a</sup> ±2.21   | 31.34 <sup>a</sup> ±3.11   | 31.59 <sup>a</sup> ±2.75   | 30.86 <sup>a</sup> ±2.66    | 25.12 <sup>a</sup> ±3.11    |
| DO (mg/l)                            | 6.04 <sup>a</sup> ±0.800  | 6.21 <sup>a</sup> ±0.750   | 6.29 <sup>a</sup> ±0.770   | 6.25 <sup>a</sup> ±0.890   | 6.25 <sup>a</sup> ±0.890    | 6.35 <sup>a</sup> ±0.390    |
| pH                                   | 7.93 <sup>ab</sup> ±0.99  | 7.98 <sup>ab</sup> ±0.720  | 8.08 <sup>ab</sup> ±0.532  | 8.11 <sup>a</sup> ±0.456   | 8.12 <sup>a</sup> ±0.110    | 8.02 <sup>ab</sup> ±0.250   |
| NO <sub>2</sub> -N (mg/l)            | 0.042 <sup>a</sup> ±0.00  | 0.010 <sup>a</sup> ±0.001  | 0.004 <sup>b</sup> ±0.002  | 0.004 <sup>b</sup> ±0.002  | 0.004 <sup>b</sup> ±0.003   | 0.014 <sup>b</sup> ±0.005   |
| NH <sub>3</sub> -N (mg/l)            | 0.120 <sup>a</sup> ±0.00  | 0.032 <sup>a</sup> ±0.002  | 0.017 <sup>c</sup> ±0.001  | 0.018 <sup>c</sup> ±0.006  | 0.012 <sup>c</sup> ±0.001   | 0.401 <sup>b</sup> ±0.002   |
| Si (mg/l)                            | 0.391 <sup>a</sup> ±0.00  | 0.593 <sup>a</sup> ±0.003  | 0.514 <sup>a</sup> ±0.029  | 0.466 <sup>a</sup> ±0.033  | 0.460 <sup>a</sup> ±0.028   | 0.206 <sup>a</sup> ±0.015   |
| PO-34 (mg/l)                         | 0.325 <sup>a</sup> ±0.02  | 0.099 <sup>b</sup> ±0.002  | 0.041 <sup>c</sup> ±0.003  | 0.039 <sup>c</sup> ±0.002  | 0.039 <sup>c</sup> ±0.002   | 0.006 <sup>c</sup> ±0.004   |
| Total bacterial plate count (CFU/ml) | -                         | 12890 <sup>a</sup> ±10.3   | 19003 <sup>a</sup> ±15.4   | 19789 <sup>a</sup> ±17.2   | 18527 <sup>a</sup> ±18.1    | 23801 <sup>a</sup> ±17.33   |
| Vibrio count bacterial (CFU/ ml)     | -                         | 283 <sup>a</sup> ±5.37     | 557 <sup>a</sup> ±6.23     | 442 <sup>a</sup> ±3.45     | 214 <sup>a</sup> ±2.77      | 659 <sup>a</sup> ±4.56      |
| Total alkalinity (mg/l)              | -                         | 120.09 <sup>a</sup> ±11.23 | 19.233 <sup>a</sup> ±12.5  | 19.632 <sup>a</sup> ±14.78 | 118.348 <sup>a</sup> ±15.63 | 116.400 <sup>a</sup> ±17.23 |
| BOD (mg/l)                           | -                         | 2.447 <sup>a</sup> ±0.890  | 2.029 <sup>a</sup> ±0.730  | 1.885 <sup>a</sup> ±0.550  | 1.800 <sup>a</sup> ±0.430   | 1.797 <sup>a</sup> ±0.850   |

Remark : 1 - = no data

2 Values a row that have the same superscript are not significantly different ( P&lt;0.05)



Fig. 2. Average transparency of marine shrimp ponds at Kung Krabaen Bay from 1991-1994.

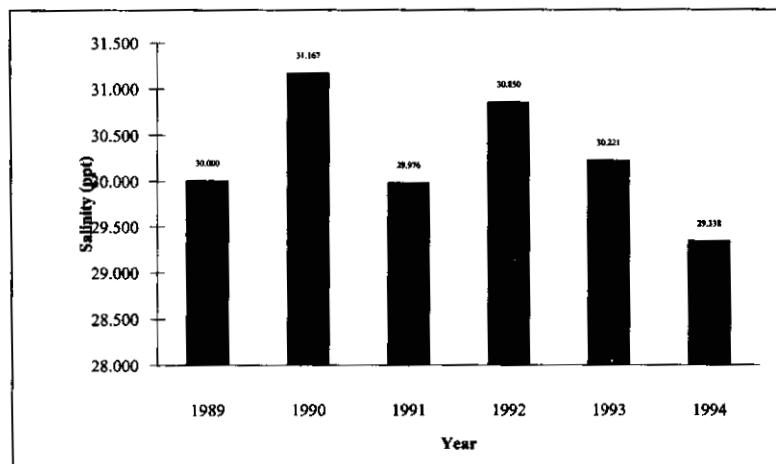



Fig. 3. Average salinity from marine shrimp ponds at Kung Krabaen Bay from 1991-1994.

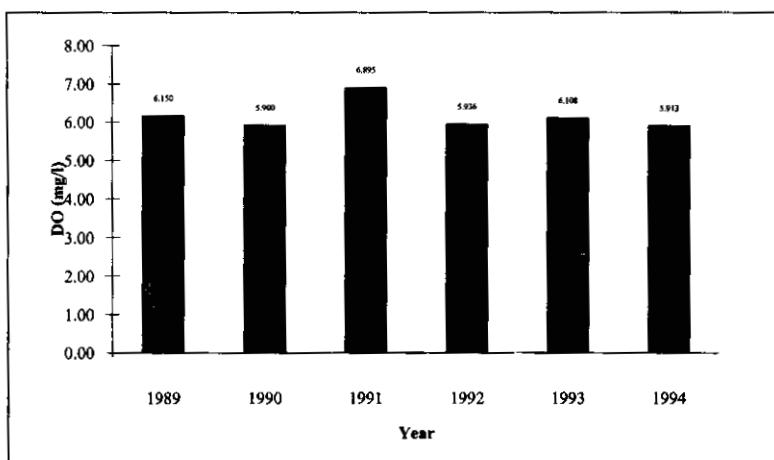



Fig. 4. Average dissolved oxygen from marine shrimp ponds and Lung Krabaen Bay from 1991-1994.

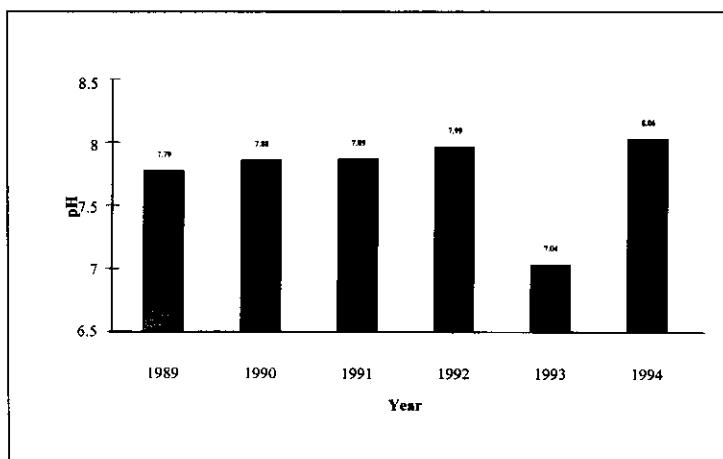



Fig. 5. Average pH from marine shrimp ponds and Kung Krabaen Bay from 1991-1994.

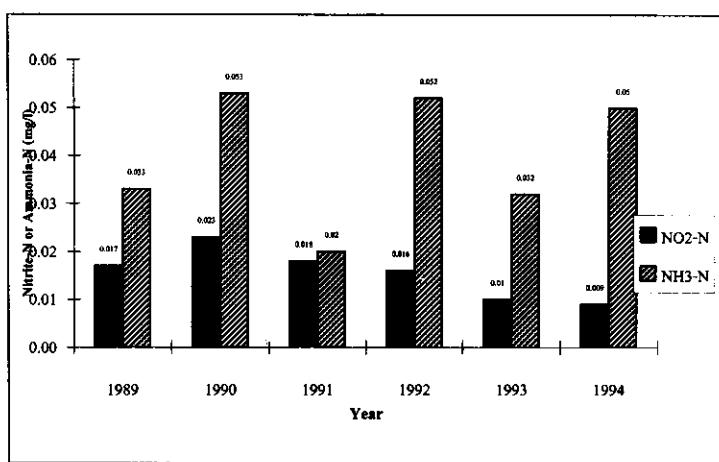



Fig. 6. Average nitrite-N and ammonia-N from marine shrimp ponds and Kung Krabaen Bay from 1989-1994.

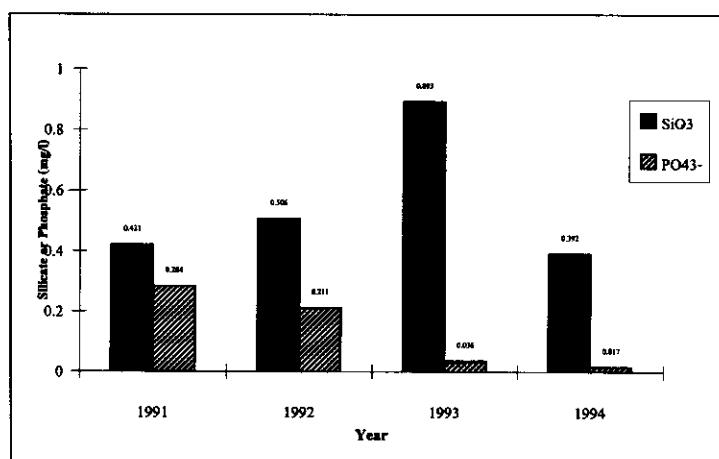



Fig. 7. Average silicate and phosphate from marine shrimp ponds and Kung Krabaen Bay from 1991-1994.

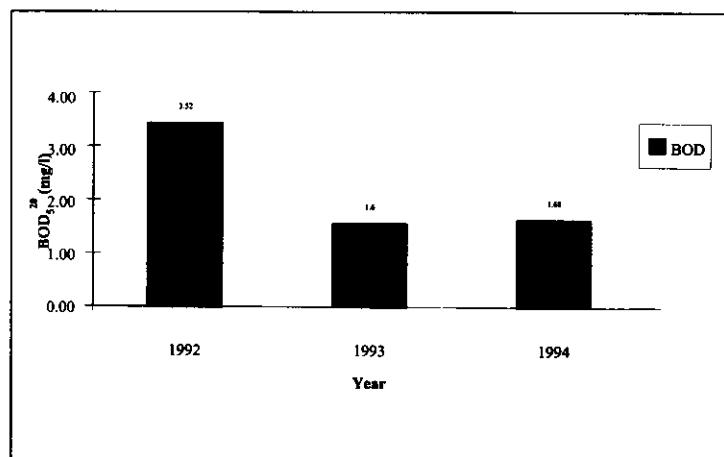



Fig. 8. Average BOD from marine shrimp ponds and Kung Krabaen Bay from 1991-1994.

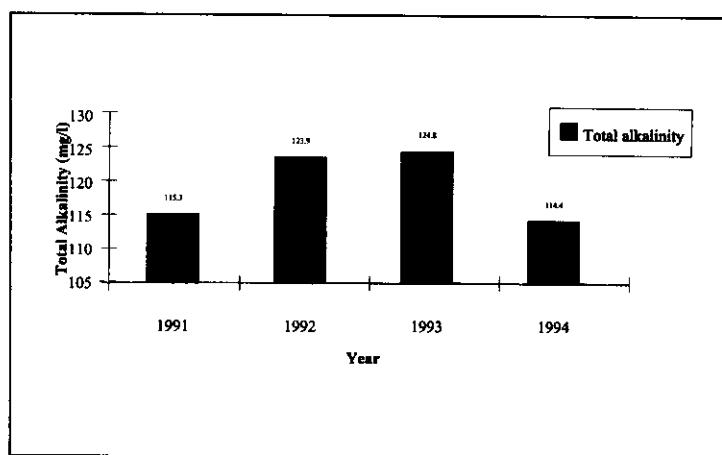



Fig. 9. Average alkalinity from marine shrimp ponds and Kung Krabaen Bay from 1991-1994.



Fig. 10. Average total bacteria plate count and vibrio bacteria from marine shrimp ponds and Kung Krabaen Bay from 1993-1994.

Table 2. Total ammonia outflow in one day at the mouth of Kung Krabaen Bay.

| Time                 | Ao (m <sup>2</sup> ) | Vo (m/s)     | NH3-N(mg/l)<br>Co (mg/l) | 3.6 (CoAoVo) | AOVO     |
|----------------------|----------------------|--------------|--------------------------|--------------|----------|
| 2100                 | 1178.45              | 0.225        | 0.033                    | 31.4999685   | 265.1513 |
| 2200                 | 1147.2               | 0.161        | 0.015                    | 9.9737568    | 184.6992 |
| 2300                 | 1123.375             | 0.19         | 0.054                    | 41.492979    | 213.4413 |
| 2400                 | 1076.475             | 0.19         | 0.034                    | 25.0345026   | 204.5303 |
| 100                  | 952.45               | 0.271        | 0.041                    | 38.09761902  | 258.114  |
| 200                  | 876                  | 0.322        | 0.037                    | 37.5719904   | 282.0272 |
| 300                  | 781.2                | 0.315        | 0.031                    | 27.4623048   | 246.078  |
| 400                  | 749                  | 0.29         | 0.064                    | 50.045184    | 217.21   |
| 500                  | 719.1                | 0.271        | 0.04                     | 28.0621584   | 194.8761 |
| 600                  | 700.15               | 0.261        | 0.518                    | 340.7719669  | 182.7392 |
| 700                  | 681.45               | 0.241        | 0.08                     | 47.2980816   | 164.2295 |
| 800                  | 619.5                | 0.161        | 0.07                     | 25.134354    | 99.7395  |
| 900                  | 491.6                | 0.152        | 0.06                     | 19.4234112   | 89.9232  |
| 1000                 | 564.2                | 0.145        | 0.055                    | 16.198182    | 81.809   |
| 1100                 | 527.35               | 0.12         | 0.036                    | 8.20113472   | 63.282   |
| Ammonia outflow (AO) |                      | =746.2678064 | 2747.894                 |              |          |

Table 3. Total ammonia inflow in one day at the mouth of Kung Krabaen Bay.

| Time                             | Ai (m <sup>2</sup> ) | Vi (m/s) | Ci mg/l | 3.6* (CIAIVI) | AIVI (m <sup>3</sup> ) |
|----------------------------------|----------------------|----------|---------|---------------|------------------------|
| 1200                             | 491.25               | 0.22     | 0.055   | 21.39885      | 108.075                |
| 1300                             | 619.5                | 0.344    | 0.019   | 14.5765872    | 213.108                |
| 1400                             | 725.9                | 0.25     | 0.025   | 16.33275      | 181.475                |
| 1500                             | 906                  | 0.255    | 0.044   | 36.595152     | 231.03                 |
| 1600                             | 1041.75              | 0.254    | 0.056   | 53.3442672    | 264.6045               |
| 1700                             | 1207.5               | 0.234    | 0.062   | 63.066276     | 282.565                |
| 1800                             | 1282.35              | 0.215    | 0.024   | 23.8209336    | 275.7053               |
| 1900                             | 1307.8               | 0.175    | 0.012   | 9.886968      | 228.865                |
| 2000                             | 1359.45              | 0.219    | 0.016   | 17.14864608   | 297.7196               |
| Ammonia inflow = 256.17 2083.137 |                      |          |         |               |                        |

Table 4. Maximum total ammonia inflow in one day at the mouth of Kung Krabaen Bay.

| Time | Aim (m <sup>2</sup> ) | Vim (m/s) | Cim (mg/l) | CimAimVim |
|------|-----------------------|-----------|------------|-----------|
| 1200 | 491.25                | 0.22      | 0.1        | 38.907    |
| 1300 | 619.5                 | 0.344     | 0.1        | 95.2576   |
| 1400 | 725.9                 | 0.25      | 0.1        | 65.331    |
| 1500 | 906                   | 0.255     | 0.1        | 83.1708   |
| 1600 | 1041.75               | 0.254     | 0.1        | 95.25762  |
| 1700 | 1207.5                | 0.234     | 0.1        | 101.7198  |
| 1800 | 1282.35               | 0.215     | 0.1        | 99.25389  |
| 1900 | 1332.95               | 0.175     | 0.1        | 83.97585  |
| 2000 | 1207.5                | 0.219     | 0.1        | 95.1993   |

Maximum ammonia inflow = 739.53414

Shrimp farm area = 142.76 ha (Leeraksakiat 1995).

$$\text{Total ammonia loading (AL)} = \frac{\text{AO-AI}}{\text{SA}}$$

where AO = total ammonia outflow

AI = total ammonia inflow

SA = Shrimp farm area

$$\begin{aligned} \text{AL} &= \frac{746.27 - 256.17}{142.76} \\ &= 3.4330 \text{ kg} \cdot \text{ha}^{-1} \cdot \text{day}^{-1} \end{aligned}$$

$$\text{Carrying capacity (C)} = \frac{\text{MAO} - \text{AO}}{\text{AL}}$$

where MAO = Maximum ammonia outflow;

$$\begin{aligned} \text{C} &= \frac{2154.40 - 746.27}{3.433} \\ &= 410.17 \text{ ha} \end{aligned}$$

Therefore, at the present shrimp farming area around Kung Krabaen Bay of 142.76 ha, the maximum potential farming area is estimated at around 552.93 ha (410.17+142.76).

## Discussion

### *The Environmental Impact*

Water quality is a critical factor for the survival and optimal growth of shrimp in cultured ponds. The maintenance of good water quality is essential in cultured shrimp production (Chiu 1988). In the present study, average water transparency remarkably decreased from 1991 to 1993, from which it can be concluded that more suspended solids accumulated in the KKB complex at that time. These solids might have resulted from shrimp ponds, which were the major source of loading in the complex. Total ammonia-nitrogen concentrations in the same period were high in drainage canals and shrimp ponds, even higher than the optimum safe concentration of  $0.1 \text{ mg} \cdot \text{L}^{-1}$ . However, ammonia concentration declined in the bay and the surrounding coastal waters and was even in the optimum safe concentration. It is doubtful that the concentration of ammonia might have decreased as it passed the canal before reaching the bay. However, this needs to be explored further in future studies.

At the present scale of shrimp farm operations in the area, most of the shrimp farms discharge their effluents directly along drainage canals. This means that suspended solids and other waste materials are transported along the canals where some might reach the bay and adversely affect its water quality. Therefore, it is recommended that sludge disposal areas or ponds be constructed to keep suspended solids from settling at the bottom. This would minimize the impact of effluents on the Bay's waters.

Stapornvanit (1993) estimated the concentration changes of each parameter in the bay by the flushing time (Beveridge 1987; NCC 1989). It was assumed that all the shrimp ponds produced shrimp. Aerial photography and ground surveys indicated that the total area under shrimp culture around Kung Krabaen Bay in 1993 was 170.62 ha, with all effluents being discharged into the bay. Concentrations of total nitrogen, total phosphorus and total organic carbon were shown to be clearly highest during harvesting.

It is clear from the present study that the water quality of the bay and its environs significantly deteriorated due to loading from shrimp culture, particularly during harvest time. Although Kung Krabaen Bay has nine canals connecting to the shrimp culture areas, during the ebb tide, loading of discharge water into the bay almost stops completely. Under this scenario, there is a likelihood that certain amounts of nutrients and polluted materials will not reach the bay. In other words, the bay will not receive all of the discharge from the shrimp farms. In this regard, it can be presumed that most of the shrimp ponds' sludge would be left in the drainage canals. This supports Stapornvanit's theory that shrimp ponds do not pollute the Bay's waters. However, this requires further study.

### ***Carrying capacity***

Rosenthal, as cited in Stapornvanit (1993), defines the term 'carrying capacity' as the maximal potential production that a species or population is able to maintain with respect to the food resources available in an area. A related term, which is particularly used when referring to environmental problems, is 'sustainable aquaculture.' The principle of sustainable development, as defined by FAO (1988), and cited by Stapornvanit (1993), means "the management and conservation of the natural resource base and the orientation of technological and institutional change in such a manner as to ensure the attainment and continued satisfaction of human needs for present and future generations. Such sustainable development (in the agriculture, forestry and fisheries sectors) conserves land, water, plant and animal genetic resources, is environmentally non-degrading, technically appropriate, economically viable and socially acceptable."

Barg (1992), in coming up with his methods for estimating the carrying capacity of areas used for oyster and mussel farming (reviewed by Heral in 1991 and cited by Stapornvanit in 1993), concluded that carrying capacity can be assessed by evaluating historical records of bivalve culture, by measuring the availability of phytoplankton biomass or by undertaking more detailed studies, e.g., of carbon and nitrogen flows through a bivalve culture unit interacting with the food web (Rodhouse *et al.* 1985, as cited by Stapornvanit 1993). Beveridge (1987) explained that the major consideration in the site selection process should be the carrying capacity of the site, i.e., the maximum level of production that a site might be expected to sustain without any environmental problems.

The carrying capacity of Kung Krabaen Bay was estimated at 552.93 ha. From this, it is possible to conclude that expanding the farmed area to around

401.17 ha will not have an impact on the environment. This means that the expansion area is about three times the present farming area and that if the farming area is expanded to 540 ha, it would not have any effect on the bay's water quality. This study showed that the water quality in the KKB complex is very poor, particularly in the drainage canals and shrimp ponds. On the other hand, water quality in the bay and coastal waters still fall under the acceptable limit. (Chien 1992; Liu 1989; Tookwinas 1985). It can be presumed that a certain amount of waste materials would settle down in the drainage canals. Thus, drainage canals may act as treatment areas for shrimp farm effluents. This agrees with Stapornvanit's result. However, this requires further in-depth study.

At present, many shrimp farmers in the KKB complex complain that :

- (I) there is not enough supply of seawater for shrimp farming;
- (ii) water quality in water supply canals is poor; and
- iii) the survival rate of shrimp in the ponds is low.

These problems have been investigated by the concerned government agencies. In response, the Department of Fisheries issued a plan and allocated a budget for a seawater irrigation project at the KKB complex in 1995 (DOF 1994). The project proposes to improve the seawater supply pumping unit and effluent treatment facility areas. However, some shrimp ponds will need reconstruction and improvement to ensure the project's success. It is hoped that this project will make shrimp farming at the KKB complex sustainable and environment-friendly.

## Conclusion

Average water transparency in Kung Krabaen Bay remarkably decreased from 1991 to 1993, probably due to the presence of drainage canals running from shrimp farms to the bay's mouth. At the same time, water quality parameters, especially ammonia-nitrogen, was in the acceptable levels for aquatic organisms.

Carrying capacity of Kung Krabaen Bay is estimated at around 553 ha. The present shrimp farm area is 143 ha. The cultured area can be expanded to around 410 ha. However, further investigation is needed to assess the environmental impact of an increase in the shrimp culture area.

## References

- APHA. 1989. Standard methods for the examination of water and wastewater, 7<sup>th</sup> ed. American Public Health Association, Washington, D.C.
- Beveridge, M. C.M. 1987. Cage aquaculture. Fishing News Books Ltd., England. 352 p.
- Barg, U.C. 1992. Guidelines for the promotion of environmental management of coastal aquaculture development (based on a review of selected experiences and concepts). FAO Fisheries Technical Paper No. 328, Rome. 122p.
- Chien, Y.H. 1992. Water quality requirement and management for marine shrimp. In: Water quality review (ed. J. Wyban), pp. 144-156. World Aquaculture Society, Baton Rouge, Louisiana.
- Chiu, Y.N. 1988. Water quality management for intensive prawn ponds. In: Technical considerations for the management (ed. Y.N. Chiu, L.M. Santos and R.O. Juliano), pp. 102-128. University of the Philippines in the Visayas, Iloilo City.

Dean, P.B. 1992. Kung Krabaen Bay; a resource and socioeconomic review. CIDA, Agrodev Canada, Inc. and Kung Krabaen Bay Royal Development Study Center, Chanthaburi. 67 pp.

DOF. 1994. The seawater pumping project at Kung Krabaen Bay, Chanthaburi Province. Department of Fisheries, Bangkok.

Grasshoff, K. 1974. Methods of seawater analysis. Verlag Chemie, New York. 143 pp.

Liu, I. C. 1989. Shrimp disease, prevention and treatment. In: Proceedings of the shrimp farm management workshop (ed. D. Akiyama), pp. 64-74. American Soybean Association, Singapore.

KKB. 1992. Manual for total organic carbon (TOC) by Astro 2001 System 2, total organic analyzer. Kung Krabaen Bay Royal Development Study Center

Marumo, R., S. Laoprasert and C. Karnjanagesorn. 1985. Plankton and near-bottom communities of the mangrove regions in Ao Kung Krabaen and the Chanthaburi River, Thailand. In: Mangrove estuarine ecology in Thailand, pp. 55-76.

NCC. 1989. Fishfarming and the safeguard of the natural marine environment of Scotland. The Nature Conservancy Council, Institute of Aquaculture, University of Stirling. 139 p.

Presertcharoensuk, T. 1992. Participation of shrimp farmers in planning and management of mangrove forest restoration. M.Sc. Thesis, Asian Institute of Technology, Bangkok. 61 pp.

Predalumpaburt, Y. 1996. Estimation of the carrying capacity of shrimp farm areas at Prea canal Mass Balance Techniques, Technical paper No. 3/1996, NICA, DOF.

Sasaki, T and H. Inoue. 1985. Studies on fundamental environments in the Kung Krabaen Bay, eastern Thailand. In: Mangrove estuarine ecology in Thailand. Thai-Japanese Cooperative Research Project on Mangrove Productivity and Development 1983-1984, pp 77-98.

Stapornvanit, K. 1993. The environmental impact of shrimp farm effluent. M.Sc. thesis. All, 152 p.

Stockwell, A. 1991. Coastal aquaculture and fisheries in the Kung Krabaen Bay Royal Development Study Center Area. Thai-Canada Kung Krabaen Bay Royal Development Study Center Project No. 901/14883

Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of sea-water analysis, 2<sup>nd</sup> ed. Fisheries Research Board of Canada Bulletin No.167, Ottawa. 310p.

SAS Institute Inc. 1990. SAS/STAT user's guide, vol. 2, GLM-VARCOMP, 4<sup>th</sup> ed. Cary, NC.

Raine, R.M. 1992. Land use patterns, environmentally sensitive areas and changes in land use over time in the coastal zone of Chanthaburi Province, Thailand. 44p.

Tchobanoglous, G. 1990. Wastewater engineering: treatment disposal reuse, 2<sup>nd</sup> ed. McGraw-Hill Offices/Metcalf & Eddy Inc. 201 pp.

Tookwinas, S. 1995. Quality and quantity of discharged water from intensive marine shrimp farms at Kung Krabaen Bay, Chanthaburi Province, eastern Thailand. In: Proceedings of the NRCT-JSPS Joint Seminar on Marine Science, (ed. A. Sanivongs, W. Utoomprukporn and M. Hungspreugs), December 2-3, 1993.

Tookwinas, S. 1985. Method of water analysis for coastal aquaculture, NICA Technical Paper 4/1985. 157 pp. (in Thai)

Ushiyama, H. 1978. Analytical method for estimating bacteria of fish. SEAFDEC Training Department, Bangkok.