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Abstract

Size frequency analysis in fisheries is commonly carried out through histograms and fre-
quency polygons. However, these procedures present several drawbacks including dependency
on the interval width and grid origin, discontinuity, and use of fixed width intervals. These
problems prompted the authors to focus their interest in alternative, more efficient,
computationally intensive methods. In this study we used kernel density estimators (KDE)
computed by computationally efficient algorithms (averaged shifted histograms) to analyze
published size data of coral trout (Plectropomus leopardus). The KDE's do not depend on the
grid origin and are continuous estimators. We also discussed several methods in choosing the
interval width (smoothing parameter or bandwidth). These nonparametric estimators provide
smoother results, that allow characteristics such as skewness, outliers, and multimodality to be
easily recognized. Using the variable bandwidth KDE in the latter case, the definition and
separation of the modes were improved, and led to more precise and objective mixed compo-
nents determination. The estimations for the individual components (mean, standard deviation
and size from Bhattacharya’s procedure) can be employed as initial values in any method for
mixed distribution analysis or can be used directly to estimate the parameters of the von
Bertalanffy growth function. Our experiences in this study suggest that KDE’s are valuable
tools in length frequency analysis and related methods such as modal progression analysis.

Introduction

Traditionally, histograms and frequency polygons are employed to ana-
lyze size frequency data. Most of the time, in these graphical procedures, the
y-axis represents the number (frequency) of observations falling in the inter-
vals (bins); however fractions or percentage scales are employed, too. An-
other less common manner of representing the ordinate axis is by using a
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density scale defined as the frequency of the bin divided by the product of
the total number of observations multiplied by the binwidth. Thus, histo-
grams and frequency polygons are estimates of the density distribution of
the data set.

In spite of their wide usage, these density estimators may be too crude
for many purposes (Tarter and Kronmal 1976). Four problems are encoun-
tered when using histograms (Fox 1990):

1. Dependency on the origin. The investigator must choose the position
of the origin of the bins (very often by using convenient “round” numbers).
This subjectivity can result to misleading estimations because a change in
the origin can change the number of modes in the density estimation
(Silverman 1986, Fox 1990, Scott 1992). Figure 1 shows the well-known
standard length (mm) data of coral trout (Plectropomus leopardus,
Serranidae) reported by Goeden (1978). Each histogram from a) to e), uses
the same binwidth (h = 38) but from a different origin (193.8, 201.4, 209,
216 and 224.2, respectively). There are bimodal, trimodal and tetramodal
histograms. It would be arbitrary to choose any of these histograms to rep-
resent the length distribution. Unfortunately, this exercise of drawing
several origin shifted histograms may lead the analyst to select (intention-
ally or not) the one best suited for his purposes.
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2. Dependency on the width and number of bins. These parameters determine the
smoothness of the frequency distribution (density estimation). Using few bins eliminates
distribution details; a large number of bins produces a noisy estimation. Frequently, the
number and width of the bins are determined arbitrarily despite their importance. As an
example, consider Figures 2 and 3 for the coral trout data. The first histogram with five
bins shows a smooth almost Gaussian distribution. The second, which has 50 bins dis-
plays a distribution with at least four modes.

3. Discontinuity. Histogram discontinuities are functions of the arbitrary
bin locations and the discreetness of the data rather than of the population
that is sampled. The local density is only computed at the midpoint of each
bin and then the bars are drawn assuming a constant density throughout
each bin (Chambers et al. 1983).

4. Fixed binwidth. If the bins are narrow enough to capture details
where density is high, they may also be too narrow to avoid noise where
density is low. This problem is often addressed by varying the binwidth, but
the height of the bar is no longer proportional to its area, which may lead to
misinterpretation.

Several methods attempting to overcome these problems have been pro-
posed. The origin and discontinuity problems are attacked by calculating the
local density at every data point. This is achieved, in essence, by constructing
fixed-width bins around each data point and not only at the midpoints of inter-
vals. From a formal point of view, the bin can be considered as a weight func-
tion that assigns positive weight to each observation within the interval and
zero weight outside it. For example, in the traditional histogram, the weight is
a constant value (uniform function) in the form of frequency, fraction, and per-
centage or density, assigned to each data point included in the interval. The
individual values for the bin are added and the result can be represented geo-
metrically through a rectangular shape (the classical bar) centered at the
bin midpoint. In the alternative procedure to estimate the density, discontinu-
ity is further addressed by considering gradually changing weight functions
(like for example the Gaussian curve). In this manner, it is possible to employ
a bell shaped figure centered at each data point and then add the individual
curves to obtain the final result (for details see Chambers et al. 1983 or Hardle
1991). These notions led to the kernel density estimator (KDE), first proposed
by Rosenblat (1956) which is defined as:

a | X
fix=— % K(——
z fin i =1 ( h }

where f }(x) is the density estimation of the variable x, n is the number of

observations, h is the bandwidth or smoothing parameter, and K(ii) is the
smooth, symmetric kernel function integrating to unity. Table 1, adapted
from Hardle (1991), lists some kernel functions.

These KDE's employ fixed bandwidths. This feature makes the esti-
mates sensible to noise in the tails or any other low count interval of the
distribution. To attack this problem, there are procedures which reduce the
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Table 1. Some common kernel functions.
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Fig. 2. Histogram with five bins for the coral trout length data.
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Fig. 3. Histogram with 50 bins for the coral trout length data.
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bandwidth in regions of high data concentration and increase it where concentration is
low. These varying KDE procedures (Jones 1990) retain details where observations con-
centrate and eliminate noise fluctuations where data are sparse.

The problem of choosing the width of the interval (bandwidth, h) remains. One
approach to choose the bandwidth suggested by Tarter and Kronmal (1976) is to vary
h until a “pleasing” smooth figure results. This procedure relies on the subjective as-
sessment of the researcher, but may be adequate for exploratory purposes (Silverman
1986) since density features “appear” and “disappear” as the bandwidth changes
(Silverman 1981a).

Statistical theory provides some guidance in the selection of an optimal
bandwidth. Unfortunately it is generally not possible to optimize the band-
width without previous knowledge of the shape of the true density distribu-
tion. Following Tukey (1977), Scott (1979) and Silverman (1978, 1986), the
Gaussian distribution can be employed as a reference standard in choosing
h. Applying a Gaussian kernel and minimizing the mean integrated squared
error (MISE), the following scale estimate can be calculated:

s=mi Z(x-%)° Hspread
e i b 1.349 J

where H_ .., is the “Hinge spread” or upper Fourth (F,) minus lower
Fourth (F)), a resistant dispersion measure approximately equivalent to the
interquartile range (Tukey, 1977). Then h can be chosen as:

0.9%
h o

n

where s is the smaller of the two estimates of the Gaussian distribution
spread parameter: s, the standard deviation or the robust F-pseudosigma, as
Hqpreaq /1-349 is named (Hoaglin 1983; Fox 1990). This adjustment provides
resistance to heavy tails and will work well for a wide range of densities
but, it tends to oversmooth highly skewed and multimodal distributions
(Silverman 1986). If this is the case, the "optimal” bandwidth can be consid-
ered as a starting point for subsequent fine tuning.

One drawback presented by the KDE's is the large number of calcula-
tions required to compute them. Scott (1985) suggested an alternative proce-
dure to overcome this problem: To eliminate the influence of the chosen ori-
gin, he proposed to get the average of several histograms with different ori-
gins instead of choosing one among them. This is the averaged shifted histo-
gram (ASH). Subsequently, Hardle and Scott (1988), developed the more
general framework called WARP (weighted averaging of rounded points).

The calculation of an ASH-WARP estimate takes three steps (1) binning
the data; (2) calculating the weights, and (3) weighing the bins. The last
graph of Figure 1 displays the result of averaging the five shifted histograms
included before; the trimodality of the data is evident as a result of a signifi-
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cantly improved signal-to-noise ratio obtained by averaging the origin.
WARPIng can be used to approximate a particular kernel density estimator
by selecting the appropriate weight function. The WARP approaches the
kernel function as the number of averaged histograms increases (Héardle 1991).

Materials and Methods

In order to illustrate the use of the KDE's presented above and to ana-
lyze size frequency distributions, we used the coral trout (Plectropomus
leopardus, Serranidae) length data set ( n = 316), adapted from Goeden
(1978). A more elaborate nonparametric approach for multimodality assess-
ment using different fish length data is presented in Salgado-Ugarte (1995).

To calculate the kernel and ASH-WARP density estimations, the pro-
grams presented in Salgado-Ugarte et al. (1993, 1995a, 1995b) were used.
These programs permit estimating the density distribution by using different
kernel functions and procedures, employing discretized and ASH-WARP
implementations. Besides, some of them permit to count and estimate the
modes present in the density estimation. The variable bandwidth KDE was
used in conjunction with a computerized version (Salgado-Ugarte et al. 1994)
of the Bhattacharya’s method to exemplify the utility of smooth density es-
timations in mixed distribution’s component identification and characteriza-
tion. We used the optimal Gaussian bandwidth as the starting point and
then decreased it to finally choose h = 5.

Results

The histogram employing the optimal Gaussian binwidth (Scott 1979) h
= 38, and origin at 133 is presented in Figure 4. The estimation suggests
the multimodality of the data but does not provide enough detail. The esti-
mation resulting from the average of five shifted histograms (Fig. 5) clearly
reveals the existence of at least four modes even when the same binwidth (h
= 38) is employed. The origin of the grid used for calculation is no longer
important. The Gaussian kernel density estimation using the bandwidth pro-
posed by Silverman (1986) h = 20 provides a smooth estimate showing four
somewhat oversmoothed modes (Fig. 6). Using this optimal value as an up-
per limit, we tried smaller values until we arrived at the final choice. The
variable Gaussian kernel density estimation employing a bandwidth (geomet-
ric mean) of h = 5 is included in Figure 8. The Gaussian components esti-
mated by the Bhattacharya’s method are also included. Bhattacharya's plot
for the KDE is shown in Figure 7 with the Gaussian components clearly
suggested by the negatively sloped segments in contrast with the noisy
graph obtained by using the original grouping scheme. Table 2 presents the
estimated parameters for the identified Gaussian components. The mean
values for components 1 to 6 (excluding component 2a) were used to estimate the von
Bertalanffy growth function through nonlinear regression:
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Table 2. Estimated parameters for Gaussian components.

Component Mean Standard Component
deviation size
1 259.9 9.9 26
2a 303.4 12.2 16
2 350.5 16.0 87
3 415.6 155 103
4 458.6 11.2 17
5 494.3 10.8 43
6 530.7 14.7 12
Total 304
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Fig. 4. Histogram with the optimal Gaussian binwidth (h = 38) and origin at 133 for the coral trout
length data.
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Fig. 5. Density estimation with five averaged shifted histograms using the optimal Gaussian
binwidth (h = 38) for the coral trout length data.
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Fig. 6. Gaussian kernel density estimation using the optimal Gaussian bindwidth (h = 20) for the
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Fig. 7. Bhattacharya's plot for the variable Gaussian kernel frequency for the coral trout length
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Fig. 8. Variable kernel density estimation (geometric mean h = 5) and estimated components for
the coral trout length data.
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Discussion and Conclusions

The use of size frequency to investigate the growth of animals dates
back to the paper of Petersen (1892) in which he presented length measure-
ments of fish and found that with temperate species breeding once a year it
is relatively easy to define a cohort by a year-class (a mode in the histogram
showing the frequency distribution). This cohort can be followed during the
first part of its life by tracing the corresponding modes in the histograms
from the samples, but when they approach their maximum size this is no
longer possible, because by then, fish of different ages have reached approxi-
mately the same size (Sparre & Venema 1992).

The statistical procedure to show the distribution of the lengths (histo-
gram) is a data smoother with the interval width being the smoother
parameter (Hardle 1991). The number of modes depends on the interval
width. In this way, in fisheries research a fundamental question must be
“What is the best interval width?” In this respect, we can recall several sug-
gestions from literature. Interval sizes of 0.5 cm for small species (< 30 cm)
and 1.0 or 2.0 cm for larger species are widely used. Wolff (1989) proposed
an empirically derived formula based on maximum observed size and esti-
mated number of age classes in the sample for selection of the optimum in-
terval size. It has been noted that in fisheries a compromise often has to be
made between measuring a small number of fish slowly and accurately, and
grouping larger numbers of measurements into wider intervals (Caddy
1986). This author suggests that the interval width should be small enough
so that successive peaks were separated by five or six size class intervals. In
his study Erzini (1990) argues that the optimum interval size for grouping
length data is a function of sample size and biological characteristics, such
as length at age variability, recruitment pattern, growth rate and maximum
size, which affect how clearly defined the modes are in the distribution.
Erzini's paper supports Caddy’s suggestion quoted above finding that empiri-
cally based methods for determining the interval width may only be useful
to provide rough estimates. Surprisingly, the effect of the origin of the inter-
vals in the resulting histogram seems not to have received attention in fish-
eries research literature.

The ASH gives a more detailed version of the density distribution (Fig.
5). This estimator in its interpolated version converges to a KDE as the
number of shifted histograms increases using the appropriate weight func-
tion. In practice it is enough to average from 10 to 15 shifted histograms to
arrive at the same results obtained using a KDE (Hardle 1991). This prop-
erty is used to save a great number of individual calculations to estimate
kernel density estimators.

The KDE's solve some of the problems of the histogram and are a suit-
able procedure for analyzing length frequency data. All the kernel functions listed in
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Table 1 have an efficiency very close to that of the maximally efficient Epanechnikov
(1969) kernel. As a consequence, a kernel function can be chosen on the basis of its
computational effort (Silverman 1986).

In working with KDE's the effect of the interval origin is solved, but
the problem of choosing the smoothing parameter (bandwidth) still remains.
However, several statistical guidelines are available. The rule for bandwidth
selection introduced above has been developed for a single underlying distri-
bution. In mixed distributions, however, there are several components
(Gaussian or of other kind), each with different parameters (such as mean
and standard deviations in the Gaussian case). The ideal number and width
of intervals may be different for each component. Dominant groups - compo-
nents with many individuals - permit the use of a large number of small
intervals; more sparsely populated components can support only a few, rela-
tively wide intervals. The classical histogram uses a fixed bin width, hence it
may do a poor job in portraying both the dominant and lesser components.
Under these circumstances, it seems to be particularly appropriate to use
the variable bandwidth KDE which adjusts the interval to provide details
(decreasing h at high density regions) and to eliminate noise (increasing h
where density is low). However, as with histograms it is important to mea-
sure lengths with the higher possible accuracy to be able to use a wide
range of bandwidths.

We will stress here the use of the variable Gaussian kernel density es-
timation (Figure 8) as it does not depend on the placement of the origin, it
adjusts the bandwidth according to the number of observations and in this
way reveals more details and greater separation of the modes in comparison
with fixed bandwidth estimations (including histograms and KDE's). The cor-
responding Bhattacharya’s plot (Fig. 7) reveals distinct, negatively sloped
linear segments not distinguishable as easily working with minimally
grouped histograms.

As a later step, the resulting parameter estimates for each component
can be used as initial values in a subsequent maximum-likelihood estimation
(Akamine 1985; Macdonald and Green 1988; Fournier et al. 1990). It is
worth to note that the density estimation could recover the overlapped com-
ponent around 460 mm of standard length, assumed by Sparre and Venema
(1992) who applied a trial and error procedure to estimate growth from
length frequency analysis with a histogram of the same data set. The esti-
mated von Bertalanffy growth function parameters (Table 3) through nonlin-
ear regression (adjusted r? = 0.9999, P < 0.05) with the variable bandwidth
KDE do not differ significantly from the values estimated by Sparre and
Venema (1992) who arrived at L, = 595, K = 0.34 and t, = -0.65: These
parameter values are included in the corresponding 95% confidence intervals
from nonlinear regression of the KDE (Table 3).

Finally, the kernel density estimates provide several ways to test and
evaluate multimodality (for details see Silverman 1981b, 1983, 1986). An ex-
ample using the smoothed bootstrap method of Silverman (1981b) is presented
in Salgado-Ugarte et al. (1997). Other approaches have been suggested by Cox (1966),
Good and Gaskins (1980) and Wong (1985). The programs for kernel calculation and
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Table 3. Nonlinear regression for von Bertalanffy growth function parameter estimation.

Parameter  Coefficient Standard t value P>1]t] 95 % Confidence
error interval

Ly 611.2513 20.3498 30.037 0.000 546.489 676.0136

K 0.2836 0.0308 9.210 0.003 0.1856 0.3816

ty -0.9687 0.1598 6.062 0.009 -1.4771 -0.4601

Note: Standard errors, P values, Cl's and correlations are asymptotic approximations.

Gaussian characterization can be dbtained from the first author.
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