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Abstract 
 

Environmental factors influence the abundance of Vibrio species in shrimp culture systems. Prediction of the 
abundance of presumptive Vibrio species can help prevent the occurrence of bacterial diseases as this will provide 
insights about when and which environmental factors to manage. In this study, the parametric linear regression 
model (LRM) and negative binomial model (NBM), and semiparametric generalised additive model (GAM) were used to 
identify correlations and predict changes of Vibrio abundance with physicochemical and biological water parameters. 
Water parameters were recorded from three 300 m2 biofloc ponds stocked with Penaeus vannamei Boone, 1931, at 
500 individuals.m-3 over four culture run periods. Each culture run lasted for 16 weeks. Imputed data were initially 
subjected to univariate analysis and Pearson’s correlation analysis. The abundance of presumptive Vibrio species was 
found to be highly correlated with alkalinity, pH, and phytoplankton density. GAM performed best among the three 
models based on Akaike’s information criterion (AIC), having the smallest value of 5,743.222 compared to 6,572.014 
and 5,857.997 values for ordinary LRM and NBM, respectively. It also had the largest deviance explained statistic with 
41.2 % of the deviance reduced by including the predictors compared with ordinary LRM and NBM with only 16.04 % 
and 14.5 % deviance reduced, respectively. GAM introduced flexibility that predicts the dependent variable better in 
terms of statistical significance than LRM and NBM. It is important to consider using a semiparametric modelling 
approach as a tool for aquaculture management. 
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Introduction 
 
Bacteria of the genus Vibrio are ubiquitous in 
aquaculture production systems. They cause Vibriosis 
and other associated diseases, posing a major 
economic threat to shrimp farming (de Souza Valente 
and Wan, 2021). The abundance of Vibrio species is 
influenced by abiotic factors such as temperature, 
pH, and salinity, and biotic factors such as microalgae 
and other organisms (Takemura et al., 2014). One 
strategy in suppressing the abundance of Vibrio 
species is the application of biofloc technology (BFT). 
It promotes large groups of heterotrophic 
microorganisms known as floc. The heterotrophic 
microorganisms limit the growth of Vibrio by 
competing on space, substrate, and nutrients 
(Emerenciano et al., 2013; Cadiz et al., 2016). Despite 

the application of BFT, the presence of external 
stressors such as low dissolved oxygen levels, high 
temperature, and high total suspended solids can still 
encourage the proliferation of pathogenic Vibrio on 
Penaeus vannamei Boone, 1931, production in 
intensive biofloc systems (Prangnell et al., 2015). 
These disturbances are the defining features of many 
ecological systems and can result in changes in 
ecosystem structure and function (Folke et al., 2004; 
Dudgeon et al., 2006).   
 
The correlations between environmental factors and 
Vibrio abundance have to be investigated for effective 
shrimp health management. It is important to 
establish the leading factors that drive Vibrio 
abundance. Parameters known to show significant 
correlations with Vibrio abundance can be used to 
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predict when a disease outbreak might occur. 
Statistical modelling can help investigate and predict 
the relationship between environmental factors and 
Vibrio abundance (Selven and Philip, 2012). The role of 
the environmental factors and their interaction with 
organisms has been recognised in the literature using 
both parametric and semiparametric models (Ma and 
Xu, 2015; Fernandez-Zapico et al., 2017). 
Semiparametric modelling is a recent technique that 
introduces flexibility to parametric models. It is a 
statistical model with parametric and nonparametric 
components. Parametric models often use stringent 
distributional assumptions such as normality and 
homoscedasticity of error terms and heavily rely on 
the assumption that the relationships between the 
dependent and independent variables are linear and 
monotonic. Violations of these assumptions lead to 
biased estimates and unreliable predictions using 
these models. A semiparametric approach, such as 
the generalised additive model (GAM), can be used to 
model both linear and nonlinear relationships without 
any of the distributional assumptions used in a linear 
model (Sun and Kumbhakar, 2013). GAM provides a 
more realistic approach to modelling growth curves 
and higher prediction accuracy in the spatio-temporal 
distribution and abundance of aquatic species in 
relation to predictor variables such as oceanographic 
or environmental conditions (Olsen et al., 2006; Ligas 
et al., 2015; Wang et al., 2020; Yusop et al., 2020).  
 
This paper aims to compare the predictive abilities of 
GAM with backfitting algorithm with ordinary linear 
regression model and negative binomial model to 
presumptive Vibrio abundance in BFT aquaculture 
setting. 
 
Materials and Methods 
 
Culture conditions 
 
Whiteleg shrimp (P. vannamei) was reared in 300 m2 
ponds with a depth of 1.8 m for 16 weeks in Carcar 
Prawn Farm, Carcar City, Cebu, Philippines, over a 
four-culture run period. Rearing water conditions 
were uniformly stabilised at normal levels in BFT 
before stocking P. vannamei at 500 individuals.m-3. 
The limited water exchange system utilised molasses 
as the carbon source and its supplementation was 
adjusted based on 15 mL.L-1 floc level (Ebeling et al., 
2006). Water management practices involved the 
application of lime and probiotics to adjust alkalinity 
and ammonia levels, respectively. Shrimp were fed 
twice daily with commercial shrimp feeds at the rate 
of 10 % body mass with consequent adjustments 
based on weekly growth sampling. 
 
Monitoring of physicochemical and 
biological water parameters 
 
Physicochemical properties of water such as 
dissolved oxygen, temperature, pH, salinity, and 

transparency were recorded daily. Methyl orange 
alkalinity (M.O. alkalinity), ammoniacal-nitrogen (NH3-
N) and nitrite-nitrogen (NO2-O) were measured (Fortes 
and Pahila, 1992) every other day. Phytoplankton and 
zooplankton densities determination (Prescott, 1962; 
Martinez et al., 1975) and bacterial enumeration were 
done every other day. Total bacterial and presumptive 
Vibrio counts were determined using dilution and 
spread plate techniques on nutrient agar 
supplemented with NaCl following the method of 
Reilly (1982) as cited in Janeo et al. (2009) and on 
thiosulfate citrate bile salt sucrose agar (TCBS), 
respectively. Green and yellow colonies were 
enumerated as presumptive Vibrio isolates (Okoh et 
al., 2015). The plates were incubated for 24 h at 30 °C. 
Aseptic techniques were strictly observed in carrying 
out bacteriological analysis. 
 
Data pre-processing 
 
Imputation is the first statistical technique used in 
this study with the purpose of filling in missing values. 
The data contained a few missing at random (MAR) 
and mostly missing not at random (MNAR) values in 
chemical and biological parameters of water because 
sampling is done every other day, and when the 
laboratory is closed due to holidays. The imputed data 
set can provide inferential parameter estimates and 
fill in missing data without distorting the distribution 
of the original dataset (Kang, 2013). Univariate 
analysis was used to describe, summarise, and find 
patterns in each water parameter based on central 
tendencies and dispersion. Each parameter was 
plotted against presumptive Vibrio count as Vibrio 
abundance. Plotting the two variables using the 
locally weighted scatterplot smoothing (LOESS) graph 
gave the summary of the actual data on the behaviour 
of Vibrio abundance, whether increasing or 
decreasing, for instance. Pearson’s correlation 
analysis was used to know whether there was a 
presence of multicollinearity among all the water 
parameters. The presence of multicollinearity would 
dictate whether certain parameters could be 
clustered, reducing the number of variables used for 
modelling. 
 

Parametric and semiparametric 
modelling 
 
Two types of parametric models were used for 
comparison. The ordinary LRM summarises 
relationships between two continuous variables and 
the NBM accounts for possible over-dispersion in the 
data set (Linton, 2017). In the semiparametric GAM, 
the function derived from each graph generated from 
the GAM fit, regardless of parametric, was used to 
create the model. The gam function in the mgcv 
package (v1.8-17; Wood, 2011) in R was used to 
estimate the parametric components’ coefficients 
and for smoothing the nonparametric components’ 
functions. Akaike’s information criterion (AIC) was the 
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index used to compare the three models based on the 
“goodness-of-fit” (Fabozzi et al., 2014). Statistical 
analyses were done using SPSS®20 and freeware R, an 
open-source statistical programming language and 
the environment by R Core Team (2013). 
 
Results 
 
Data pre-processing 
 
Vibrio abundance plotted against physicochemical 
and biological parameters using locally weighted 
scatterplot smoothing known as the LOESS method 
revealed possible parametric and nonparametric 
forms of the data. Figure 1a depicts a sigmoidal curve

where Vibrio abundance initially increases slowly, then 
goes exponentially but eventually approaches a 
steady state when plotted against dissolved oxygen. 
Figure 1b shows that Vibrio species frequently occur 
in temperatures between 28 °C to 30 °C. A positively 
inclined line observed in Figures 1c and 1d suggests a 
direct relationship between Vibrio abundance with 
salinity and pH. In contrast, Figures 1e and 1f suggest 
an indirect relationship between Vibrio abundance to 
alkalinity and ammonia levels. Vibrio abundance 
initially increases but then eventually decreases as 
nitrite level increases in Figure 1g. Vibrio abundance 
and water transparency seem to have no relationship, 
as indicated by the horizontal line in Figure 1h. 
 
 

 
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  

Fig. 1. Scatterplot of Vibrio abundance (total cell count) against physicochemical parameters: (a) dissolved oxygen, (b) 
temperature, (c) salinity, (d) pH, (e) alkalinity, (f) ammonia, (g) nitrite, and (h) transparency of water samples from Penaeus 
vannamei biofloc ponds. Fitted locally weighted scatterplot smoothing (LOESS) regression curves (red line) show nonlinear and 
nonmonotonic relationships between variables. 
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Major groups of phytoplankton identified from the 
water samples were green algae (86 %) and blue-
green algae (10 %), while major groups of zooplankton 
identified were dinoflagellates (79 %) and barnacle 
larva (13 %). Figure 2a shows that Vibrio abundance 
decreases as phytoplankton count increases. 
Meanwhile, Figure 2b suggests no possible 
relationship between Vibrio abundance and 
zooplankton count, as indicated by the horizontal line. 
A summary of the mean and standard deviation of the 
physicochemical and biological parameters of water 
measured during the four culture runs of P. vannamei 
in biofloc ponds are given in Table 1. 
 

Parametric and semiparametric 
modelling 
 
All environmental parameters except for transparency 
and zooplankton count were observed to follow 
significant patterns and thus considered variables or

predictors for parametric and semiparametric 
modelling. Estimated coefficients of the ordinary LRM 
fitted using the data with imputed values are shown in 
Table 2. In general, the model generated was 
significant (F = 17.480, P < 0.001) with no evidence of 
serial autocorrelation (Durbin-Watson statistic = 
0.703). The 16.04 % variability in the Vibrio count can 
be accounted by the set of significant predictors. 
Days of culture (t =  − 2.032, P = 0.043), pH level (t = 
3.896, P < 0.001), phytoplankton density (t =  − 2.027, 
P = 0.043), and alkalinity (t = − 6.726, P < 0.001), are 
the predictors found to be significant. 
 
The estimated generalised linear model with negative 
binomial as the random component distribution and 
logarithm function as the link function was significant 
(𝜒2 = 72.093, P < 0.001). Using this model, 
approximately 14.5 % of the variability in the 
dependent variable or changes in Vibrio abundance 
can be explained by the three predictors listed in the 
table. Consistently, phytoplankton count (t = − 4.611,  
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Scatterplot of Vibrio abundance (total cell count) against (a) phytoplankton and (b) zooplankton counts of water samples 
from Penaeus vannamei biofloc ponds. Fitted locally weighted scatterplot smoothing (LOESS) regression curves (red line) show 
nonlinear and nonmonotonic relationships between variables. 
 
 
Table 1. Descriptive statistics of the physicochemical and biological parameters of water measured during the four culture runs 
of Penaeus vannamei. Number of sampling points (n), mean, and standard deviation (SD) are shown. This does not include the 
imputed data. 
 

Variables 
Run 1 Run 2 Run 3 Run 4 

n Mean SD n Mean SD n Mean SD n Mean SD 
Temperature 
(°C) 

25 29.22 1.03 32 28.57 1.53 21 29.37 1.65 33 28.95 0.86 

Transparency 
(cm) 

20 17.52 17.26 32 22.98 12.79 21 37.62 19.05 33 27.24 20.96 

Salinity (ppt) 25 17.89 1.91 32 20.04 0.20 23 16.83 2.89 33 21.82 1.29 
pH 25 7.67 0.18 32 7.81 0.46 23 7.45 0.59 33 7.49 0.35 
D.O. (ppm) 25 4.61 0.75 32 4.83 0.80 21 3.47 0.60 33 4.17 1.05 
Alkalinity (ppm) 17 109.59 33.06 25 116.47 91.97 14 196.36 48.93 20 157.91 35.54 
Ammonia (ppm) 21 0.52 0.81 21 0.47 0.63 14 0.74 0.84 20 0.31 0.55 
Nitrite (ppm) 17 0.21 0.19 22 0.25 0.19 13 0.14 0.17 18 0.35 0.35 
Phytoplankton 
(total cell count 
in ‘000) 

18 225.73 166.61 22 407.27 436.44 14 879.78 632.73 20 836.80 328.69 

Zooplankton 
(total cell count) 

18 145.78 169.63 22 769.32 2060.20 14 7.14 10.75 17 96.47 100.56 

Vibrio 
abundance 
(total cell count) 

25 1912.44 2546.52 32 2114.69 2160.75 23 171.17 142.23 33 360.91 448.00 
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Table 2. Parameter estimates for the ordinary linear regressiona between Vibrio abundance and the set of predictors. Estimated 
coefficients (B) with their corresponding standard errors (SE), t and P – values are shown. Time, phytoplankton count, and 
alkalinity negatively affect Vibrio abundance, while pH level positively affects Vibrio abundance. 
 

Predictors B SE (B) t P – value 

Intercept − 2,865.000 1714.944 − 1.671 0.096 

Time − 5.399 2.657 − 2.032 0.043 

pH level 855.332 219.564 3.896 <0.001 

Phytoplanktonb − 182.185 89.878 − 2.027 0.043 

Alkalinity − 14.278 2.123 − 6.726 <0.001 
aR2 = 0.1604, F = 17.48, P < 0.001; D – W = 0.703; AIC = 6,572.104 
bPhytoplankton count. 
 
 
P < 0.001) and alkalinity (t = − 7.055, P < 0.001) are 
observed to be negatively associated with Vibrio 
abundance. Specifically, an increase in phytoplankton 
count decreases Vibrio abundance by 42.7 %, while an 
increase in the alkalinity decreases Vibrio abundance 
by 1.2 % (Table 3). On the other hand, pH level is 
positively associated with Vibrio count (t = 6.676, P < 
0.001). There is a corresponding increase of 346.3 % 
in the Vibrio count for every increase in the pH level. 
The intercept is observed to be insignificant (t = 
− 0.590, P = 0.555). 
 
The estimated generalised linear model with negative 
binomial as the random component distribution and 
logarithm function as the link function was significant 
(𝜒2 = 72.093, P < 0.001). Using this model, 
approximately 14.5 % of the variability in the 
dependent variable or changes in Vibrio abundance 
can be explained by the three predictors listed in the 
table. Consistently, phytoplankton count (t = − 4.611, 
P < 0.001) and alkalinity (t = − 7.055, P < 0.001) are 
observed to be negatively associated with Vibrio 
abundance. Specifically, an increase in phytoplankton 
count decreases Vibrio abundance by 42.7 %, while an 
increase in the alkalinity decreases Vibrio abundance 
by 1.2 % (Table 3). On the other hand, pH level is 
positively associated with Vibrio count (t = 6.676, P < 
0.001). There is a corresponding increase of 346.3 % 
in the Vibrio count for every increase in the pH level. 
The intercept is observed to be insignificant (t = 
− 0.590, P = 0.555). 
 
The third model considered in this study is the GAM 
with negative binomial as the count distribution and 
log as the link function. The estimated model is 
significant (χ2 = 26.161, P < 0.001), with 41.2 % of the 
deviance explained by the model. Consistent with the 
previous two models, pH level (χ2 = 23.100, P < 0.001), 
phytoplankton count (χ2 = 16.140, P < 0.001), and 
alkalinity (χ2 = 83.820, P < 0.001), were found to be 
related with Vibrio count. However, unlike the first two 
models, the relationship of these three variables with 
Vibrio count is not entirely linear, as manifested in the 
estimated degrees of freedom (edf) shown in Table 4. 
 

The relationships of these predictors with Vibrio 
count are visualised in Figure 3 by plotting the 
estimated smoothed functions for pH level, 
phytoplankton, and alkalinity. It can be observed in 
Figure 3a that the relationship between Vibrio count 
and pH is not entirely linear, but the overall function is 
increasing. This means that an increase in the pH 
level results in an increase in the Vibrio count. Large 
increments can only be observed for 7.5 pH levels and 
higher. Phytoplankton count has a quadratic 
relationship with Vibrio count, in that, Vibrio count 
decreases at a certain phytoplankton density and 
increases again as the phytoplankton count increases 
from 1 × 106. However, a large confidence band 
(denoted by the blue-green shaded area) in Figure 3b 
is noticed in the plot suggesting that the smoothed 
function is less precise. This is in view of having a 
small number of observations for a large 
phytoplankton count value. Alkalinity in Figure 3c 
shows a downward trend which means Vibrio count 
decreases as alkalinity increases, which is also not 
entirely linear. 
 
Aside from pH level, phytoplankton, and alkalinity, 
salinity is also observed to be linearly related to Vibrio 
count. Figure 3d shows a downward linear trend in the 
Vibrio count as the level of salinity increases. 
Estimating the coefficient for this linear association, 
Table 3 posted an estimate of − 0.125 (se = 0.046) as 
the slope of the log of counts. This means that there 
is a 13.3 % decrease in the Vibrio count for every 
increase in the salinity. It is noted that the intercept is 
significant using the GAM model (t = 10.055, P < 
0.001). When model fits are ranked according to AIC 
values, the model with the lowest AIC value is 
considered the “best” model (Fabozzi et al., 2014). 
Overall, the GAM is the best model, followed by the 
NBM and the LRM with AIC values of 5,743.222; 
5,857.997; and 6,572.104, respectively. 
 
Discussion 
 
Parametric models are the most used statistical 
approaches in investigating the relationships among 
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Table 3. Parameter estimates for the negative binomial modela  between Vibrio abundance and the set of predictors. Estimated 
coefficients (B) with their corresponding standard errors (SE), its exponential form, Exp (B), t and P - values are shown. 
Phytoplankton count and alkalinity negatively affect Vibrio abundance, while pH level positively affects Vibrio abundance. 
 

aScale parameter = 0.4818; Deviance explained = 14.5 %; χ2 = 72.093, P < 0.001; AIC = 5,857.997 
bPhytoplankton count. 
 
 
Table 4. Parameter estimates for the semiparametric modela between Vibrio abundance and the set of predictors. Estimated 
coefficients (B) with their corresponding standard errors (SE), t and P - values are shown. The relationship between Vibrio 
abundance and salinity is linear while it is nonlinear with time, pH level, phytoplankton count, and alkalinity. 
 

 B SE (B) t P - value 

Intercept 9.264 0.921 10.055 <0.001 

Salinity − 0.125 0.046 − 2.748    0.006 

 
Smoothed terms 

 
edf 

 
Ref. df 

 
Chi-square 

 
P - value 

Time 8.778 8.987 410.160 <0.001 

pH level 1.867 1.981 23.100 <0.001 

Phytoplanktonb 1.940 1.996 16.140 <0.001 

Alkalinity 1.783 1.951 83.820 <0.001 
aDeviance explained = 41.2 %; χ2 = 26.161, P < 0.001; AIC = 5,743.222 
bPhytoplankton count. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Results of the generalised additive model (GAM) fitted for Vibrio abundance from Penaeus vannamei biofloc ponds. 
Partial response plots from the fitted GAM, showing the additive effects of the covariates on Vibrio count: pH level (a), 
phytoplankton count (b), alkalinity (c), and salinity (d). The solid lines are the smoothing functions and the blue-green shaded 
areas represent confidence intervals at 95 %. 

Predictors B SE (B) Exp (B) t P - value 

Intercept − 0.828 1.404 0.437 − 0.590 0.555 

pH Level 1.242 0.186 3.463 6.676 <0.001 

Phytoplanktonb − 0.355 0.077 0.701 − 4.611 <0.001 

Alkalinity − 0.012 0.002 0.988 − 7.055 <0.001 
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Vibrio abundance, virulence, host susceptibility, and 
environmental factors. For instance, Selven and Philip 
(2012) used analysis of variance (ANOVA), Pearson’s 
correlation analysis, and multiple regression analysis 
to emphasise the importance of salinity as a 
significant factor for the virulence of Vibrio harveyi in 
Indian prawn (Fenneropenaeus indicus Milne Edwards, 
1837) Pérez Farfante, 1969. Azandégbé et al. (2010) 
concluded that temperature was the main factor 
influencing the concentration of Vibrio spp. and Vibrio 
aestuarianus in the sediment of giant cupped oyster 
Crassostrea gigas (Thunberg, 1793), farms in France by 
incorporating one-way ANOVA and multiple 
regression analysis. Pfeffer et al. (2003) indicated that 
Vibrio levels were primarily controlled by temperature, 
turbidity, and dissolved oxygen levels, estuarine 
bacteria, and coliforms by conducting extensive 
multiple regression analysis. Takemura et al. (2014) 
summarised environmental correlations with Vibrio 
presence and abundance. Temperature and salinity 
were the strongest predictors, while dissolved 
oxygen, nitrogen, pH, turbidity, and days of culture 
(time) had lesser explanatory power.  
 
However, in the present study, both parametric and 
semiparametric models revealed that alkalinity, pH, 
and phytoplankton count influence Vibrio abundance. 
Generalised additive model (GAM) further revealed 
that Vibrio abundance had a negative linear 
relationship with salinity. Vibrios prefer alkaline 
conditions. A unique mechanism of homeostasis 
allows them to thrive in an environment with higher 
pH and salinity. Throughout the life cycle of Vibrio 
cholerae, Na+ is expected to play a role in the survival 
and pathogenicity in salinic-alkaline environments. 
Vibrio cholerae possesses genes encoding three 
putative Na+/H+ antiporters homologous with V. 
alginolyticus and V. parahaemolyticus (Padan et al., 
2005). Meanwhile, healthy phytoplankton cells can 
serve as a carbon source for Vibrios and increased 
species richness can positively affect Vibrio 
abundance. The behaviour of the graph in Figure 2a 
may be explained by the type of phytoplankton 
species thriving in the pond. Phytoplankton-
associated bacterial communities are strongly 
affected by phytoplankton bloom in general and by the 
type of algal species that dominates in the natural 
bloom (Turner et al., 2009; Peterson et al., 2010; 
Sison-Mangus et al., 2016).  
 
According to Takemura et al. (2014), the 
inconsistencies found in the results from different 
studies might be due to a narrow range of 
observations. This is true with P. vannamei BFT ponds 
where water parameters are maintained at optimum 
range such that salinity ranges from 15 to 25 ppt, pH 
ranges from 7.5 to 8.5, transparency  >10 cm and 
dissolved oxygen >4 ppm (Corre et al., 2015). It is 
recommended to collect water physicochemical and 
biological data of a wider range of observations from 
other P. vannamei culture systems. Presumptive 
Vibrio count in this study was enumerated based on 

the growth of yellow and green colonies from the 
commonly used selective medium, TCBS agar (Okoh 
et al., 2015). A modified TCBS medium can be 
adopted, such as that of Owens (2019) in which 
sucrose is added; and Tagliavia et al. (2019) in which 
the salt composition resembles that of the marine 
environment to improve the isolation and purification 
of Vibrio. 
 
Although not widely used in aquaculture research, the 
semiparametric approach is one of the recent 
methods used in environmental studies. GAMs afford 
more flexibility in the response function since the 
predictor variables parametric, semiparametric, and 
nonparametric regression functions are accepted. It 
is proved to be competitive and highly promising for 
more complex data. In addition, GAMs are more 
adaptive and require less intervention. These have 
also proved useful for analysing trends in time series. 
Typically, long series exhibit a nonlinear trend of 
arbitrary shape in time. One crucial choice is the 
degree of smoothness of the trend curve, which can 
be selected using several data-driven methods 
(Ballesteros-Gomez and Rubio, 2011). Morton et al. 
(2009) represented the trend as a smoothing spline 
for easier extrapolation. A method based on the ability 
to predict a short term into the future was proposed 
for choosing the smoothing parameter. The choice 
addressed the purpose at hand and performed very 
well and avoided the tendency to interpolate data 
typical of other data-driven methods used to select 
the smoothing parameter. The following method was 
applied to stream salinity measurements at Eppalock 
on the Campaspe River in Victoria, Australia. The 
semiparametric approach was also applied in the 
environmental studies of Lu et al. (2014) and Diaby et 
al. (2015) on forecasting SO2 and NOx concentrations 
for urban air quality assessment and on the temporal 
evolution of bacterial communities associated with 
the in-situ wetland-based remediation of a marine 
shore porphyry copper tailings deposit, respectively. 
 
Conclusion 
 
Vibrio abundance is highly correlated with alkalinity, 
pH, and phytoplankton density, as revealed by the 
parametric linear regression model (LRM), negative 
binomial model (NBM), and generalised additive model 
(GAM). GAM further showed that Vibrio abundance is 
correlated with salinity. GAM is the best model based 
on Akaike’s information criterion (AIC) values; and the 
predictors can explain 41.2 % of the variability in the 
dependent variable. Changes in alkalinity, pH, 
phytoplankton density, and salinity dictate Vibrio 
abundance. Thus, it is important to monitor these 
parameters and maintain them at the desired level to 
achieve effective shrimp health management. 
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