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Abstract 
 

Aeromonas hydrophila is a major pathogen causing septicemic disease and high mortality in cultured bighead catfish, 
Clarias macrocephalus Günther, 1864. Crossbreeding for enhanced disease resistance may help alleviate the 
infection. This study aimed to evaluate the crossbreeding effects of bighead catfish from three broodstock sources, 
including one domesticated strain (Can Tho - CT) and two wild strains (Ca Mau - CM and Hau Giang - HG), on the innate 
immune response. Eight diallel crosses (excluding HG × CT) were reared in tanks for 100 days to the juvenile stage for 
use in this study. Forty-five bighead catfish juveniles of similar sizes, 4.5–6.1 g, were sampled from each cross to 
evaluate the immune response and stress indicators. Thirty fish from each cross were challenged with A. hydrophila. 
The results showed that innate immune responses of domesticated CT strains were higher than wild strains (HG and 
CM). Higher values of white blood cells, phagocytic activity, and lysozyme activity were observed in CT × CT and CT × 
CM crosses. These crosses had significantly lower cortisol levels and lower mortality rates of 40 % (CT × CT) and 43.3 
% (CT × CM) after being challenged with A. hydrophila compared to the other crosses. The results demonstrate that 
domesticated CT strain and crossbreeding between CT and CM wild strains could improve the innate immune system 
and resistance to A. hydrophila. The innate immune responses of the domesticated CT strain were higher than wild 
strains (HG and CM). 
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Introduction 
 
The bighead catfish (Clarias macrocephalus Gunther, 
1864) is a member of the Clariidae family, has a high 
economic value, and is a favourite fish among 
Southeast Asian consumers (Na-Nakorn, 2004). Its 
population in the wild has declined rapidly (Ng et al., 
2021), and it has been domesticated and cultured in the 
Philippines (Mollah and Tan, 1983), Thailand (Na-Nakorn, 
2004), and Vietnam for several decades (Duong and 
Scribner, 2018). However, one of the challenges in 
farming bighead catfish is its high susceptibility to 
diseases (Na-Nakorn, 2004). 
 
Disease infection is an acute problem in farmed 
bighead catfish (Kartikaningsih et al., 2020). The 
major pathogenic bacteria which commonly cause 

disease in Clarias catfish are Aeromonas hydrophila 
(Aoki, 1999; Srisapoome et al., 2019; Kozlov et al., 
2021), Flavobacterium columnare, and Edwardsiella 
ictaluri (Boonyaratpalin and Kasornchan, 1986). 
However, A. hydrophila is reported to be more virulent, 
with high mortality rates, and can kill 80–100 % of fish 
larvae after 1 to 2 weeks of infection (Cipriano, 2001; 
Kozlov et al., 2021), up to 70–80 % in fry to fingerling, 
and 50 % mortality of grow-out stage (Sharma et al., 
2018). This disease was named motile aeromonas 
septicemia (MAS) and is infectious to many 
freshwater fish species (Aoki, 1999). 
 
Genetic improvement is one of the potential solutions 
to increase fish growth rates and fish health (Kjoglum 
et al., 2008; Leeds et al., 2010; Gjedrem, 2015). 
Previous studies have noted the feasibility of 
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improving disease resistance to specific pathogens 
by selective breeding or crossbreeding approaches in 
various aquaculture species (Chevassus and Dorson, 
1990; Yanez et al., 2014; Houston, 2017). The selective 
breeding method has been more commonly applied 
due to relatively high additive genetic variance for 
resistance to different diseases in salmonid species 
(Yanez et al., 2014), such as three main farmed 
salmonids species, including Atlantic salmon (Salmo 
salar Linnaeus, 1758) (Correa et al., 2015), rainbow 
trout (Oncorhynchus mykiss (Walbaum, 1792)) (Vallejo 
et al., 2017), and coho salmon (Oncorhynchus kisutch 
(Walbaum, 1792)) (Barria et al., 2019). Crossbreeding of 
genetically different strains that showed 
improvement in growth performance or survival rates 
have been undertaken for guppy, (Poecilia reticulata 
Peters, 1859) (Shikano and Taniguchi, 2002), the 
Pacific blue shrimp (Penaeus stylirostris (Stimpson, 
1874)) (Goyard et al., 2008), climbing perch (Anabas 
testudineus (Bloch, 1792)) (Ahammad et al., 2021). 
  
In bighead catfish, Srisapoome et al. (2019) reported 
that heritability estimates for genetic parameters of 
resistance to A. hydrophila were low to moderate, 
implying a low to moderate possibility of success in 
improving bacterial resistance by selection. The 
potential of crossbreeding has been only somewhat 
previously explored to enhance disease resistance in 
fish. For example, in African catfish (Clarias gariepinus 
(Burchell, 1822)), crossbreeds between the two 
genetically distinct populations exhibited an increase 
in phagocytosis activity compared to the parental 
crosses but did not differ in the specific immune 
response to A. hydrophila (Wachirachaikarn et al., 
2009). This current study investigates whether 
crossbreeding could improve the innate immune 
response and resistance to A. hydrophila in bighead 
catfish at juvenile stages. One domesticated and two 
wild strains of bighead catfish from the Vietnamese 
Mekong Delta, previously found to have a relatively 
high level of genetic diversity (Duong and Scribner, 
2018), were used to produce offspring for this study. 
 
Materials and Methods 
 
Ethical approval 
 
The experiments using bighead catfish in this study 
were approved by Can Tho University, under the 
approval of the project “Green technology innovation 
for aquaculture”, No. 08/HD.VN14P6NC.2018, dated 31 
January 2018. 
 
Fish population and mating design 
 
The current study used three bighead catfish 
populations from the Vietnamese Mekong Delta. The 
wild males and females of bighead catfish were 
collected in Ca Mau (CM) and Hau Giang (HG) 
provinces, while the cultured fish were bought from a 
hatchery in Can Tho (CT). Nine (3 × 3) diallel crosses 
within and among the three populations (16 to 18 pairs 

for each genetic type) were artificially produced 
(Table 1). These crosses were nursed in tanks for 100 
days (in larval and juvenile rearing experiments 
reported by Duong et al. (2022)) and used for health 
evaluation. Unfortunately, the crossbreed of HG × CT 
(dam × sire) had low survival and was not used for this 
study. 
 
Table 1. Nine crosses within and between three bighead catfish 
Clarias macrocephalus broodstock from Ca Mau, Can Tho, and 
Hau Giang used in the present study (Duong et al., 2022). 
 

Male 
Female 

Ca Mau  
(CM) 

Can Tho  
(CT) 

Hau Giang  
(HG) 

Ca Mau (CM) CM × CM CM × CT CM × HG 

Can Tho (CT) CT × CM CT × CT CT × HG 

Hau Giang (HG) HG × CM HG × CT HG × HG 
 

 
Fish rearing and sampling 
 
The rearing of fish from larval to juvenile stages was 
divided into two stages as follows. 
 
Larval rearing 
 
Three days post-hatch (DPH), larvae from the nine 
crosses were randomly stocked in 50-L tanks (1000 
larvae per tank) and six replicates. Larvae were fed 
with Moina sp. twice a day for the first 10 days. Then, 
commercial feed (40 % crude protein) was added to 
combine with Moina until they could utilise 100 % 
artificial feed. After 40 days, the fingerlings were 
transferred to 500-L tanks and reared for 2 months to 
reach the juvenile size. 
 
Juvenile rearing 
 
Nine groups of fish with four replicates each were 
reared in a recirculating system of 36 tanks. Three 
hundred fish were stocked in rearing tanks and fed 
satiation with a commercial diet containing 43 % 
crude protein four times a day. After 2 months, fish 
from each cross were collected for an immune assay 
and pathogen challenge. The cross of HG × CT had low 
survival rates and was not used for health evaluation. 
 
Fish sampling for health evaluation 
 
Forty-five fish from each of 8 crosses with relatively 
similar sizes (mean weight 4.5–6.1 g and total length 
8.9–9.3 cm across treatments) were chosen and 
anaesthetised with 100 mg.L-1 benzocaine. The fish 
were then bled from the caudal vein using 1.0 mL 
syringes. For plasma isolation, blood samples were 
left for 4 h at 4 °C, centrifuged at 5000 ×g for 10 min, 
and the supernatant was retained as plasma. Plasma 
samples were stored at -80 °C before further 
analyses. All samples were analysed for immune 
parameters, including counts of white blood cells 
(WBCs) and red blood cells (RBCs), phagocytic activity, 
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and lysozyme activity.  
 
Thirty fish from each cross mentioned above were 
challenged with A. hydrophila for evaluation of 
bacterial resistance. 
 
Haematological and immunological 
variables 
 
Selected blood cells parameters and indicators of 
humoral immunity were analysed. 
 
Red blood cell (RBC) counting 
 
Total RBCs were counted on a Neubauer 
haemocytometer after staining with Natt-Herrick 
solution (Natt and Herrick, 1952). First, 10 μL of each 
blood sample was diluted into 1990 μL of Natt and 
Herrick’s solution and mixed gently for at least 3 min. 
The cell suspension was placed into the chamber and 
allowed to settle for 2–3 min before initiating the 
count under the light microscope. The RBCs were 
counted in 5 of the 25 small areas. 
 
White blood cell (WBC) counting 
 
A small drop of the whole blood was smeared on a 
microscope slide using a smearing slide (Cover 
glasses 24 x 50, Germany). The slide smear was dried 
quickly, fixed in methanol (95 %, M1775, Sigma) for 1-2 
min, and stained with Wright-Giemsa (Rowley, 1990). 
Total WBC count was determined following Correa et 
al. (2017). 
 
Phagocytic activity 
 
Phagocytic activity was assayed following the method 
of Siwicki and Anderson (1993) with slight 
modifications by Soltanian and Fereidouni (2016). 
Briefly, 100 µL of Saccharomyces cerevisiae was 
added to 100 µL of blood samples in a 1.5 mL tube. 
Then, the mixture was incubated at 28 °C for 30 min 
after thorough mixing in the tube. After incubation, 
the tube was mixed gently, and 30 µL of this 
suspension was smeared on the glass slide. The 
smeared slides were air-dried and fixed with ethanol 
for 1 min and stained with Giemsa. The phagocytic 
cells were counted under the microscope. Phagocytic 
activation (PA) was determined by enumerating 100 
phagocytes per slide. The mean PA in each slide was 
calculated by dividing the number of phagocytic cells 
with engulfed bacteria by the number of phagocytes 
and multiplying by 100. 
 
Lysozyme assay 
 
The lysozyme assay protocol was adapted from Ellis 
(1990) and Milla et al. (2010). Briefly, 10 μL of plasma 
was mixed with 130 μL of lyophilised Micrococcus 
lysodeikticus (Sigma) suspension in phosphate buffer 
(pH 6.2) in 96-well microplates. The difference in 
absorbance at 450 nm was monitored between 0 and 

5 min and used to calculate lysozyme activity in units. 
One unit represents the amount of lysozyme that 
caused a 0.001 decrease in absorbance. 
 
Challenge experiment 
 
The challenge experiment was set up with nine 
treatments, including fish from eight crosses that 
were immersed with 105 CFU mL-1 of A. hydrophila and 
one treatment as a negative control using 30 fish 
from eight crosses. Each treatment was triplicated 
using 30 fish and 10 fish stocked per tank. The 
mortality and clinical signs of fish were recorded daily 
for 14 days after the challenge test. The head kidney 
was collected from moribund fish for bacterial 
confirmation. After 3 days of challenge test, blood 
samples of fish were collected to analyse cortisol 
levels in plasma. Plasma cortisol was analysed using a 
cortisol ELISA kit (DRG Instruments GmbH, Germany) 
and following the manufacturer’s instructions. 
 
Statistical analysis 
 
The data were expressed as mean ± standard 
deviation (SD). Statistical data analysis involved one-
way analysis of variance (ANOVA) followed by Tukey’s 
posthoc multiple comparison tests. The level of 
significance is expressed as P < 0.05. 
 
Results 
 
RBCs and WBCs counts 
 
The RBCs of bighead catfish were not significantly 
different, except in the CT × CM crossbreed. They 
ranged between 2.55 ± 0.31 to 3.14 ± 0.14 × 106 cells 
mm-3 (Table 2). The number of RBCs in the CT × CM 
crossbreed (3.14 ± 0.14 × 106 cells mm-3) was highest 
and significantly different from that of the CM × CT 
crossbreed and HG × HG parental cross (2.55 ± 0.31 
and 2.6 ± 0.15 × 106 cells mm-3, respectively) (P < 0.05). 
 
 
Table 2. Red and white blood cell counts of eight crosses from 
three bighead catfish Clarias macrocephalus broodstock 
obtained from Ca Mau (CM), Can Tho (CT), and Hau Giang (HG). 
 

Crossbreeds 
Red blood cells 
(× 106 cells mm-3) 

White blood cells 
(× 105 cells mm-3) 

CT × CT 2.91 ± 0.15ab 2.04 ± 0.15b 

CT × CM 3.14 ± 0.14b 2.09 ± 0.11b 

CT × HG 2.86 ± 0.24ab 1.74 ± 0.26a 

CM × CM 2.93 ± 0.16ab 1.82 ± 0.19ab 

CM × CT 2.55 ± 0.31a 1.75 ± 0.22a 

CM × HG 2.80 ± 0.19ab 1.64 ± 0.18a 

HG × HG 2.60  ± 0.15a 1.84 ± 0.21ab 

HG × CM 3.01 ± 0.40ab 1.96 ± 0.22ab 
Values are means ± SD of different crossbreeds (n = 45). 
Within the columns, values with the same superscripted 
letters are not significantly different (P > 0.05). 
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The WBCs of bighead catfish crosses ranged from 
1.64 ± 0.18 to 2.09 ± 0.11 × 105 cells mm-3 (Table 2). The 
fish from CT × CT and CT × CM crosses showed higher 
numbers of WBCs (2.04 ± 0.15 and 2.09 ± 0.11 × 105 cells 
mm-3), and were significantly different from the other 
crossbreeds. Fish of CM × HG showed the lowest value 
of WBCs (1.64 ± 0.18 × 105 cells mm-3). 
 
Lysozyme activity 
 
Lysozyme activity of bighead catfish crosses ranged 
from 129 ± 5.07–235 ± 27.16 U mL-1 (Fig. 1). Lysozyme 
activity values of CT × CT and CT × CM were 228 ± 19.15 
and 235 ± 27.16 U mL-1, respectively and were 
significantly higher than the other crosses. 
Meanwhile, fish of HG × CM had the lowest value of 
lysozyme activity (129 ± 5.07 U mL-1), which was 
smaller by 1.8 folds than that of CT × CM. 
 
Phagocyte activity 
 
Phagocyte activity of the eight crosses ranged from 
43 ± 2.42 to 57 ± 2.9 %. Of which CT × CM showed 
higher phagocyte activity (57.0 ± 2.9 %), which was not 
significantly different from CT × CT (53.2 ± 2.23 %), but 
significantly different from the other crosses (Fig. 2).

The fish of CM × CT and HG × HG showed lower 
phagocyte activity of 44.2 ± 3.82 and 43.5 ± 2.42 %, 
respectively. 
 
Cortisol level 
 
After challenged with A. hydrophila, cortisol levels of 
fish from the eight crosses were ranged from 4.78 ± 
1.6–12.56 ± 1.26 ng mL-1 (Fig. 3). Fish of CT × CT and CT 
× CM indicated lower values of cortisol of 5.63 ± 0.66 
and 4.78 ± 1.26 ng mL-1, respectively and were 
significantly different from the other treatments with 
the exception of CM × HG and HG × CM. In contrast, the 
cortisol of CM × CT was significantly higher compared 
to the other crosses. 
 
Fish mortality after the challenge test 
 
The bacterial challenge test induced significantly 
higher cumulated mortalities of 73.3 ± 5.7 % in CM × 
CT and 70 ± 9.8 % in CT × HG treatments, while the 
mortality rates were lower in other crossbreeds (40 ± 
10 %–63.3 ± 5.8 %) (Fig. 4). Fish from CT × CT and CT × 
CM showed lower mortalities of 40 ± 10 % and 43.3 ± 
5.8 %, respectively, significantly lower than other 
crosses, except for CM × CM and HG × CM. 
 
 

 

  

Fig. 1. Lysozyme activity of eight crosses from three bighead 
catfish Clarias macrocephalus broodstock obtained from Ca 
Mau (CM), Can Tho (CT), and Hau Giang (HG). 
 

 

Fig. 2. Phagocyte activity of the eight crosses from three 
bighead catfish Clarias macrocephalus broodstock obtained 
from Ca Mau (CM), Can Tho (CT), and Hau Giang (HG). 
 
 

  

Fig. 3. Cortisol levels of eight crosses from three bighead 
catfish Clarias macrocephalus broodstock obtained from Ca 
Mau (CM), Can Tho (CT), and Hau Giang (HG). 

Fig. 4. Mortality in the eight crosses of bighead catfish 
Clarias macrocephalus after challenged with Aeromonas 
hydrophila. 

 



104    Asian Fisheries Science 35 (2022):100–107 

 

Discussion 
 
The physiological status of fish can be indicated by 
their haematological parameters (Chauhan et al., 
2014). This study found that the RBC counts from the 
seven different crosses were quite similar, and only 
the crossbreed of CT × CM showed a significant 
increase in RBC counts compared to that of CM × CT 
and HG × HG crosses. The enhancement of RBC 
counts suggests that the blood has a high oxygen-
carrying capacity, which is typical of fish capable of 
aerial respiration and high activity (Baleta and 
Bolaños, 2019), and oxygen absorption within living 
cells (Akinwande et al., 2016). Srisapoome et al. (2019) 
also determined the haematocrit of bighead catfish 
and reported that it was not different among 36 
families in a selection program. The study addressed 
that the heritability of haematocrit was low and 
implied that it is difficult to improve this trait by 
selection. 
 
White blood cells can be used as a health indicator to 
evaluate fish immune responses (Tavares-Dias et al., 
2007). This study revealed that the WBC counts were 
significantly higher in CT × CT and CT × CM crosses. 
The domesticated strain (CT × CT) showed higher WBC 
counts than wild strains (CM × CM and HG × HG). The 
WBCs are important immune cells that attack foreign 
invaders or infectious pathogens. Therefore, 
increasing WBCs in fish indicate the enhancement of 
fish immune responses (Akinwande et al., 2016). The 
other crosses, including CT × HG, CM × CM, CM × CT, 
CM × HG, HG × HG, and HG × CT showed similar and 
normal ranges of WBC counts for bighead catfish 
juveniles. The results indicate the good health of the 
experimented fish after 3 months of rearing under 
tank conditions. 
 
Phagocytes in blood present an important mechanism 
in fish's innate immune response with the role of 
preventing infectious diseases. The process involves 
the internalisation, killing, and digestion of invading 
microorganisms (Panigrahi et al., 2005). The findings 
described in this study illustrate an increase of 
phagocytic activity in crosses within domesticated 
(CT × CT) and domesticated × wild (CT × CM and CT × 
HG) populations compared to those of wild × wild and 
wild × domesticated crosses (CM × CM, CM × HG, CM × 
CT, HG × HG, and HG × CM). These results agree with 
the study of Savich and Vosnyj (1979). They found 
higher haemoglobin concentrations in the blood of 
crossbreeds with Amur wild common carp (Cyprinus 
carpio Linnaeus, 1758), and increased growth and 
survival rates (cited by Svobodova et al., 2008).  
 
Wachirachaikarn et al. (2009) studied African catfish 
(Clarias gariepinus (Burchell, 1822)) in Thailand and 
observed that the crossbreeds of the two 
domesticated strains were genetically divergent for 
phagocytosis activity relating to the innate immune 
system, but not for survival and growth. Srisapoome 
et al., (2019) reported bighead catfish had low to 

moderate heritability values for immune traits, 
including bactericidal activity, lysozyme activity, and 
alternative complement activity (ACH50). Likewise, 
the improvement of phagocytic activity in the 
domesticated crossbreeds found in this study may be 
supported by the increase of WBCs, which aid the fish 
to fight against pathogens.  
 
The innate immune system is the first line of defence 
in fish and comprises many components existent in 
the body before pathological infection (Magnadottir, 
2006). Lysozyme is an anti-microbial protein 
associated with the front-line innate immunity of 
invertebrates. This enzyme breaks the bond in the cell 
wall of Gram-positive and Gram-negative bacteria 
(Saurabh and Sahoo, 2008; Marsh and Rice, 2010). This 
study indicated high levels of lysozyme activity in all 
crosses except the crossbreed of HG x CM. Higher 
lysozyme activity was found in CT × CT and CT × CM 
crosses and significantly differed from other crosses. 
In contrast, Srisapoome et al. (2019) reported a low 
heritability of lysozyme activity in bighead catfish and 
suggested that this trait has a low additive genetic 
variation. However, the variety of lysozyme activity 
may depend on the immune status of the fish at blood 
collection (Roed et al., 2002) and on measuring 
conditions such as incubation time and temperatures 
(Chiayvareesajja et al., 1999). Other authors have 
noted the genetic variation of immunological and 
physiological parameters and found a correlation 
among salmon immune responses and survival rates 
in challenge tests.  
 
Some immune parameters, including lysozyme 
activity, the haemolytic activity of serum (Roed et al., 
1993), antibody titre, and serum IgM levels (Lund et al., 
1995) were recorded as heritability immune in salmon. 
In the present study, the enhancement of immune 
parameters in domesticated crossbreeds compared 
to wild crossbreeds can be explained by genetic 
adaptation to captive conditions. This highlights the 
complexity of the mechanisms involved in the 
immune response and many factors that may be 
associated with disease resistance. 
 
The cortisol levels of fish were measured as stress 
indicators following exposure to A. hydrophila. The 
result revealed dramatically different cortisol levels 
among parental crosses and crossbreeds. The 
cortisol level was significantly higher in CM × CT 
crossbreed than in other crossbreeds, while levels 
were low in CT × CT and CT × CM. However, further 
information about the relationship between cortisol 
levels or stress indicators and crossbreeding of fish is 
mostly lacking in the available literature. In contrast, 
selection programs successfully improve the stress 
tolerance of fish. Fevolden et al. (1991) used a family 
selection method to establish two lines of high and 
low cortisol responses for Atlantic salmon (S. salar) 
and rainbow trout (O. mykiss). The offspring (F1) were 
vaccinated against Vibrio anguillarum, as a stressor, 
and their post-stress reactions were measured. The 
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stress responses, including glucose and cortisol 
levels, were significantly different between the two 
lines in F1 generation of Atlantic salmon, while there 
was no difference between the two lines in rainbow 
trout. These results support the evidence of a genetic 
component to the stress response. Therefore, 
selective breeding based on the correlation between 
stress, innate immunity, and disease resistance is 
considered an attractive method of improving disease 
resistance in fish (Cnaani, 2006). 
 
The crossbreeding approach has also been applied to 
improve growth performance, survival rate, and 
disease resistance in some important aquaculture 
species (Odegard et al., 2011; Houston, 2017; Barria et 
al., 2019). The present study showed variations in 
crossbreeds mortalities (40–73.3 %) after being 
subjected to A. hydrophila. The results demonstrate a 
general trend that crosses from maternal 
domesticated CT (i.e., CT × CT and CT × CM, except CT 
× HG) showed improved disease resistance over wild × 
wild and wild × domesticated crosses. The crosses 
with better disease resistance were also found to 
have lower cortisol levels and higher innate immune 
system values (the number of RBCs and WBCs, 
lysozyme activity, and phagocyte activity).  
 
Disease resistance has been a targeted trait for many 
genetic improvement programs (Houston, 2017). 
However, few publications show the successful 
improvement of disease resistance in Clarias catfish 
by using the crossbreeding approach, except for 
Prarom (1990), who reported that crosses from 
different strains of C. macrocephalus improved 
resistance to A. hydrophila infections. However, Na-
Nakorn et al. (1995) reported that the resistance to A. 
hydrophila of C. macrocephalus did not improve by 
mass selection. A further study showed low 
heritability of resistance to A. hydrophila based on the 
binary survival (alive/dead) trait (Srisapoome et al., 
2019). In the present study, bighead catfish resistance 
to A. hydrophila was possibly due to the complexity of 
the mechanisms involved in the immune system. 
Perhaps in the crossbred, the immunological 
parameters, including WBCs, phagocytic activity, 
lysozyme, and cortisol levels, function more 
effectively in response to pathogens. The results 
from this study support the use of crossbreeding to 
produce more resistant bighead catfish seeds, which 
can help mitigate and potentially control the problems 
associated with the pathogens. 
 
Conclusion 
 
The immune response of bighead catfish, Clarias 
macrocephalus, from eight crosses within and among 
domesticated strains (Can Tho - CT) and two wild 
strains (Ca Mau - CM and Hau Giang – HG) showed an 
enhancement to the innate immune system in the 
domesticated strain (CT × CT) and the crossbreed of 
CT × CM. These two crosses (CT × CT and CT × CM) 
showed an enhanced immune response through an 

increased white blood cells, lysozyme activity, 
phagocytic activity, and resistance to the pathogen A. 
hydrophila. These findings highly recommend 
promoting CT × CT and CT × CM crosses to help control 
one of the most common diseases affecting bighead 
catfish culture. Further studies should evaluate the 
advantages of crossbreeding for genetic 
improvement of bighead catfish with different 
breeding goals, such as adaptation to climate change. 
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