Asian Fisheries Society, Manila, Philippines

# **Short Communication**

# Length-Weight Relationships for Thirty Fish Species in Lake Niushan, a Shallow Macrophytic Yangtze Lake in China

# S. YE<sup>1,2</sup>, Z. LI<sup>1\*</sup>, G. FENG<sup>3</sup> and W. CAO<sup>1</sup>

<sup>1</sup>State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences 430072 Wuhan, China

<sup>2</sup>Graduate University of the Chinese Academy of Sciences 100039 Beijing, China

<sup>3</sup>East China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences 200090 Shanghai, China

# Abstract

Length-weight relationships are presented for 30 fish species captured from April 2002 to January 2004 in Lake Niushan, China. The values of the exponent b in the length-weight relationships (W=aL<sup>b</sup>) ranged from 2.845 to 3.435 and the median of b was 3.103, whereas 50% of the values ranged between 3.032 and 3.203. In the eight examined species, sexual dimorphism did not affect the length-weight relationships, except in the cases of *Siniperca chuatsi* and *Cultrichthys erythropterus*. The application of the length-weight relationships presented here should be limited to the observed length ranges.

<sup>\*</sup> Corresponding author. Tel.: +86 27 6878 0717, fax: +86 27 6878 0063 Email address: zhongjie@ihb.ac.cn

# Introduction

Length-weight relationships are extensively used in fisheries researches and are useful for (1) calculating the weight of a given individual fish of known length or total weight of fish from length-frequency distribution; (2) estimating age structure, weight growth rate, and several other aspects of fish population dynamics; (3) converting growth-in-length equations to growth-in-weight equations for use in stock assessment models; (4) estimating indices of condition of fish in a given geographical area; and (5) making between-region comparisons of life histories and morphology of certain species (Kohler et al. 1995; Petrakis and Stergiou 1995; Anderson and Neumann 1996; Moutopoulos and Stergiou 2000; Stergiou and Moutopoulos 2001).

In this study we describe length-weight relationships for 30 fish species in Lake Niushan, which is one of the numerous lakes distributed along the middle and lower reaches of the Yangtze River, China. These lakes are typically shallow with dense submerged aquatic macrophytes and are highly productive (Liu 1984; Xie and Chen 1996). Historically, they were interconnected to the main stream or the branches of the Yangtze River, thus forming a potamo-lacustrine complex ecosystem. The frequent exchanges of nutrients and the complement of habitats between lentic and lotic waters provided favorable conditions for the development of unique and complicated biota (Liang and Liu 1995). Fish species are abundant in these lakes -- generally 40~70 species or even more in some lakes (Fang et al. 1995; Huang and Xie 1996; Zhang et al. 1996; Song et al. 1999; Zhu 2004). Studies on fish population biology, including length-weight relationship, have been widely carried out in these lakes since the 1960's. However, most of these studies focused mainly on commercially important fish species, such as common carp Cyprinus carpio, bighead carp Aristichthys nobilis, silver carp Hypophthalmichthys molitrix, crucian carp Carassius auratus, mandarin fish Siniperca chuatsi, topmouth culter Culter alburnus and so on. Very few published data on length-weight relationships are available for small forage fishes which are of low commercial values. Moreover, there is an urgent need to utilize and monitor the excessive forage fish resources in these Yangtze lakes, and this requires basic knowledge of population biology for the forage species (Xie et al. 2000).

The 30 fish species (Table 1) we included in the present study are all common and representative species in the middle and lower reaches of the Yangtze River. Among them, 15 species are targeted by local commer-

| Species                         | Sex     | Ν    | Length characteristics Parameters of the relationship |       |      |       | Р      | Growth |        |       |        |      |
|---------------------------------|---------|------|-------------------------------------------------------|-------|------|-------|--------|--------|--------|-------|--------|------|
|                                 |         |      | Mean                                                  | SE    | Min. | Max.  | а      | b      | SE (b) | $r^2$ |        | type |
| Abbottina rivularis<br>*        | Both    | 187  | 6.07                                                  | 0.078 | 3.1  | 10.4  | 0.0079 | 3.032  | 0.059  | 0.934 |        | IS   |
| Acheilognathus<br>chankaensis * | Both    | 68   | 7.51                                                  | 0.057 | 6.3  | 8.7   | 0.0091 | 3.127  | 0.132  | 0.895 |        | IS   |
| Aristichthys nobilis            | Both    | 114  | 45.45                                                 | 1.027 | 24.2 | 73.4  | 0.0061 | 3.167  | 0.032  | 0.989 |        | PA   |
| Carassius auratus               | Both    | 1126 | 14.84                                                 | 0.135 | 5.5  | 31.8  | 0.0120 | 3.100  | 0.010  | 0.989 |        | PA   |
|                                 | Males   | 150  | 13.71                                                 | 0.313 | 7.7  | 22.3  | 0.0110 | 3.127  | 0.023  | 0.992 |        |      |
|                                 | Females | 215  | 15.77                                                 | 0.309 | 7.7  | 22.3  | 0.0125 | 3.087  | 0.021  | 0.990 | 0.1814 |      |
| Channa argus *                  | Both    | 383  | 35.12                                                 | 0.465 | 11.3 | 70.0  | 0.0054 | 3.121  | 0.023  | 0.979 |        | PA   |
| -                               | Males   | 32   | 37.73                                                 | 0.895 | 28.4 | 51.7  | 0.0065 | 3.069  | 0.078  | 0.981 |        |      |
|                                 | Females | 33   | 37.44                                                 | 0.771 | 30.6 | 47.0  | 0.0115 | 2.915  | 0.087  | 0.973 | 0.1863 |      |
| Ctenopharyngodon<br>idellus     | Both    | 243  | 42.33                                                 | 0.651 | 15.2 | 78.2  | 0.0108 | 3.006  | 0.023  | 0.986 |        | IS   |
| Culter alburnus *               | Both    | 413  | 46.42                                                 | 0.632 | 23.9 | 104.4 | 0.0036 | 3.121  | 0.014  | 0.991 |        | PA   |
| Culter dabryi *                 | Both    | 51   | 31.27                                                 | 1.266 | 13.9 | 45.8  | 0.0032 | 3.246  | 0.057  | 0.985 |        | PA   |
| Cultrichthys<br>erythropterus   | Both    | 780  | 17.30                                                 | 0.132 | 5.2  | 33.2  | 0.0021 | 3.435  | 0.015  | 0.985 |        | PA   |
|                                 | Males   | 90   | 16.72                                                 | 0.256 | 13.5 | 25.4  | 0.0022 | 3.340  | 0.061  | 0.972 |        |      |
|                                 | Females | 105  | 19.32                                                 | 0.266 | 13.6 | 25.5  | 0.0011 | 3.642  | 0.061  | 0.972 | 0.0059 |      |
| Cyprinus carpio                 | Both    | 315  | 46.05                                                 | 0.784 | 12.4 | 82.3  | 0.0149 | 2.966  | 0.019  | 0.987 |        | IS   |
|                                 | Males   | 67   | 47.27                                                 | 0.882 | 38.2 | 70.3  | 0.0202 | 2.876  | 0.090  | 0.940 |        |      |
|                                 | Females | 59   | 54.86                                                 | 1.291 | 37.9 | 70.4  | 0.0192 | 2.911  | 0.092  | 0.947 | 0.8791 |      |
| Hemiculter<br>bleekeri *        | Both    | 54   | 15.69                                                 | 0.287 | 8.9  | 20.2  | 0.0060 | 3.059  | 0.173  | 0.857 |        | IS   |

Table 1. Descriptive statistics and estimated parameters of the length-weight relationships for the 30 fish species collected in Lake Niushan during the period 2002-2004

| Table 1 (continued)              |                  |            |                                             |                |              |              |                  |                  |                |                |        |      |
|----------------------------------|------------------|------------|---------------------------------------------|----------------|--------------|--------------|------------------|------------------|----------------|----------------|--------|------|
| Species                          | Sex              | Ν          | Length characteristics Parameters of the re |                |              |              | the relation     | e relationship P |                |                |        |      |
|                                  |                  |            | Mean                                        | SE             | Min.         | Max.         | а                | b                | SE (b)         | $r^2$          |        | type |
| Hemiculter<br>leucisculus *      | Both             | 128        | 15.19                                       | 0.215          | 8.9          | 21.4         | 0.0077           | 2.948            | 0.086          | 0.904          |        | IS   |
|                                  | Males<br>Females | 106<br>152 | 14.62<br>14.65                              | 0.133<br>0.111 | 11.7<br>11.7 | 18.1<br>18.3 | 0.0113<br>0.0104 | 2.827<br>2.863   | 0.123<br>0.093 | 0.835<br>0.864 | 0.8443 |      |
| Hyporhamphus<br>intermedius *    | Both             | 22         | 12.16                                       | 0.232          | 10.5         | 14.3         | 0.0020           | 2.866            | 0.197          | 0.914          |        | IS   |
| Hypophthalmich-<br>thys molitrix | Both             | 96         | 39.70                                       | 0.791          | 15.2         | 64.1         | 0.0052           | 3.162            | 0.026          | 0.994          |        | PA   |
| Mastocembellus<br>sinensis *     | Both             | 84         | 16.65                                       | 0.301          | 10.5         | 24.2         | 0.0008           | 3.286            | 0.104          | 0.923          |        | PA   |
| Megalobrama<br>amblycephala      | Both             | 428        | 32.34                                       | 0.279          | 10.0         | 45.9         | 0.0066           | 3.203            | 0.019          | 0.986          |        | PA   |
| Micropercops<br>swinhonis *      | Both             | 64         | 4.54                                        | 0.092          | 2.5          | 6.1          | 0.0037           | 3.364            | 0.162          | 0.874          |        | PA   |
| Mylopharyngodon<br>piceus        | Both             | 18         | 63.38                                       | 3.406          | 43.6         | 83.6         | 0.0097           | 3.063            | 0.089          | 0.987          |        | IS   |
| Odontobutis<br>obscura *         | Both             | 412        | 13.07                                       | 0.100          | 7.8          | 19.0         | 0.0063           | 3.298            | 0.046          | 0.926          |        | PA   |
| Parabramis<br>pekinensis         | Both             | 79         | 29.56                                       | 0.861          | 9.9          | 41.6         | 0.0034           | 3.322            | 0.039          | 0.990          |        | PA   |
| Paracheilognathus<br>imberbis *  | Both             | 92         | 5.23                                        | 0.066          | 4.0          | 7.3          | 0.0101           | 2.982            | 0.062          | 0.963          |        | IS   |
|                                  | Males            | 43         | 5.32                                        | 0.126          | 4.0          | 7.3          | 0.0101           | 2.994            | 0.063          | 0.982          |        |      |
|                                  | Females          | 49         | 5.16                                        | 0.057          | 4.3          | 5.9          | 0.0119           | 2.872            | 0.130          | 0.912          | 0.4406 |      |

220

#### Asian Fisheries Science 20(2007):217-226

| Table 1 (continued)                |         |      |                        |       |      |      |           |       |        |       |        |      |
|------------------------------------|---------|------|------------------------|-------|------|------|-----------|-------|--------|-------|--------|------|
| Species                            | Sex     | Ν    | Length characteristics |       |      | Para | meters of | Р     | Growth |       |        |      |
|                                    |         |      | Mean                   | SE    | Min. | Max. | а         | b     | SE (b) | $r^2$ |        | type |
| Pelteobagrus<br>fulvidraco *       | Both    | 494  | 13.64                  | 0.164 | 7.2  | 25.5 | 0.0158    | 2.845 | 0.028  | 0.954 |        | NA   |
| Pseudorasbora<br>parva             | Both    | 107  | 6.64                   | 0.188 | 3.0  | 10.7 | 0.0074    | 3.081 | 0.037  | 0.985 |        | PA   |
|                                    | Males   | 54   | 7.04                   | 0.111 | 4.2  | 8.5  | 0.0068    | 3.112 | 0.081  | 0.966 |        |      |
|                                    | Females | 33   | 6.13                   | 0.152 | 4.4  | 8.6  | 0.0088    | 3.046 | 0.092  | 0.973 | 0.3780 |      |
| Rhinogobius<br>giurinus *          | Both    | 27   | 4.60                   | 0.163 | 3.0  | 6.2  | 0.0075    | 2.983 | 0.252  | 0.849 |        | IS   |
| Rhodeus ocellatus *                | Both    | 44   | 4.49                   | 0.070 | 3.5  | 5.7  | 0.0104    | 3.049 | 0.166  | 0.889 |        | IS   |
| Sarcocheilichthys<br>nigripinnis * | Both    | 167  | 8.16                   | 0.131 | 4.0  | 12.3 | 0.0066    | 3.145 | 0.041  | 0.973 |        | PA   |
| Silurus asotus *                   | Both    | 35   | 28.38                  | 1.019 | 17.5 | 45.2 | 0.0019    | 3.325 | 0.118  | 0.960 |        | PA   |
| Siniperca chuatsi                  | Both    | 1072 | 26.00                  | 0.219 | 10.0 | 66.1 | 0.0103    | 3.105 | 0.013  | 0.983 |        | PA   |
|                                    | Males   | 187  | 24.78                  | 0.410 | 17.0 | 43.6 | 0.0112    | 3.069 | 0.030  | 0.982 |        |      |
|                                    | Females | 189  | 26.16                  | 0.408 | 16.5 | 44.0 | 0.0079    | 3.185 | 0.031  | 0.982 | 0.0113 |      |
| Toxabramis<br>swinhonis *          | Both    | 289  | 8.92                   | 0.082 | 5.3  | 12.1 | 0.0061    | 2.845 | 0.057  | 0.897 |        | NA   |
| Xenocypris<br>argentea             | Both    | 51   | 14.17                  | 0.209 | 10.8 | 18.0 | 0.0061    | 3.089 | 0.164  | 0.879 |        | IS   |

N, sample size; Min. and Max., minimum and maximum total lengths in cm; a and b, the parameters of the length-weight relationship; SE, standard error;  $r^2$ , the coefficient of determination; *P*, the *P*-value for Student's *t*-test comparing the slopes of the regressions between males and females; IS, isometric; PA, positive allometric; NA, negative allometric; \* , no L–W relationship information was found in FishBase (Froese and Pauly 2006).

cial fisheries, namely A. nobilis, C. auratus, Channa argus, Ctenopharyngodon idellus, C. alburnus, Culter dabryi, Cultrichthys erythropterus, C. carpio, H. molitrix, Megalobrama amblycephala, Mylopharyngodon piceus, Parabramis pekinensis, Pelteobagrus fulvidraco, Silurus asotus, and S. chuatsi; the other 15 species belong to small forage fishes. To our knowledge, no published data currently exists on the length-weight relationships of Abbottina rivularis, Acheilognathus chankaensis, Hemiculter bleekeri, Hemiculter leucisculus, Hyporhamphus intermedius, Mastocembellus sinensis, Sarcocheilichtys nigripinnis and Toxabramis swinhonis in the Yangtze region. In addition, no L–W relationship information was found for 18 species (marked with asterisk in table 1) in FishBase (Froese and Pauly 2006).

## **Materials and Methods**

Lake Niushan (30°16-22′ N, 114°27-38′ E) is a shallow lake located on the south bank of the middle reach of the Yangtze River, in the Hubei Province, China. This lake, with a total area of 38 km<sup>2</sup> and a depth of 2.4-5.0 m, is heavily covered with submerged aquatic macrophytes. In the spring of 2003, the macrophyte coverage was 78% of the sediment surface and the macrophyte biomass was 1225 g·m<sup>-2</sup> (Ye 2007).

Sampling took place in Lake Niushan from April 2002 to January 2004. Fish were captured using gill nets, weir nets, cormorants and electrofishing. Particular effort was exerted to collect small forage fishes and juveniles of some commercial fishes, by sampling seasonally (September 2002 to August 2003) with block nets (15-mm stretched mesh size).

Total length was measured to the nearest 0.1 cm. Individual weight was recorded to the nearest gram or with a precision balance to the nearest 0.1 gram whenever possible. The relationship between total length and weight ( $W = aL^b$ ) was converted into its logarithmic expression: lnW = lna+ blnL. The parameters a and b were calculated by least-squares regression. Student's *t*-test at the 0.05 significant level was applied to verify if the b value for each species was significantly different from the isometric value 3. Student's *t*-test was also used to test for possible significant differences of slopes (b) between the males and females of eight species (Table 1), with the data collected during the breeding season (April to June 2003). The parameters a and b obtained from other geographical areas for some species are available in FishBase (Froese and Pauly 2006), and are presented for comparison with the values from this study.

# **Results and Discussion**

A total of 9007 individuals of the 30 fish species representing nine families were captured. Cyprinidae (21 species, 70% of the total number of species) was the predominant family. Sample descriptive statistics and estimated parameters of the length-weight relationship for the 30 species are summarized in table 1. The sample size ranged from 18 for *M. piceus* to 1126 for *C. auratus*. All regressions were highly significant (P < 0.001) and the  $r^2$  values ranged from 0.849 to 0.994. The estimates of parameter b ranged from 2.845 for *P. fulvidraco* and *T. swinhonis* to 3.435 for *C. erythropterus*, with a mean value of 3.111 (SE = 0.026). The median of b was 3.103, whereas 50% of the values ranged between 3.032 and 3.203 (Figure 1).



Fig. 1. Box-Whiskers plots of the exponent b of the length-weight relationships  $(W=aL^b)$  for the 30 fish species in Lake Niushan. The central box covers 50% of data values, the vertical line indicates the median, and the horizontal line represents the range of the values.

The exponent b often has a value close to 3, but varies between 2 and 4 (Tesch 1971). The value b=3 indicates that the fish grows symmetrically or isometrically; values other than 3 indicate allometric growth (Tesch 1971). The kind of growth was determined by Student's *t*-test. The results revealed that 12 species (40.0%) showed isometric growth, 16 species (53.3%) positive allometric growth, and two species (6.7%) negative allometric growth (Table 1).

During the breeding season, pronounced sexual dimorphism in length-weight relationship was observed for *S. chuatsi* and *C. erythropterus* with significant differences in the slopes (b) of length-weight relationships between males and females. No significant differences existed in the slopes (b) between males and females in the other six examined species (Table 1).

For the 30 species, the data on length and weight are not representative of a particular season or time of year and were obtained throughout the year. Therefore, the length-weight relationships may be assumed to approximate an annual average. However, as a result of the size-selective characteristics of fishing gears the samples may not have included all available lengths. For more precise weight estimations through lengthweight relationships, it is important to limit their application to the observed length ranges (Petrakis and Stergiou 1995).

The a and b values for *C. auratus*, *C. idellus*, *C. carpio*, *H. molitrix* and *P. parva* obtained from different geographical areas are presented in table 2. The observed differences in the values can be attributed to the combination of one or more of the following factors: (1) differences in environmental or habitat factors; (2) differences in the utilized length types and length ranges; and (3) differences in the number of specimen examined.

| Species           | Geographical area                      | Length | Length           | а      | h     |
|-------------------|----------------------------------------|--------|------------------|--------|-------|
| species           | Geographical area                      | type   | range (cm)       | u      | U     |
| Carassius auratus | Alabama, USA <sup>2</sup>              | TL     | $1.5 \sim 40.6$  | 0.0295 | 2.900 |
|                   | Lake Niushan, China <sup>1</sup>       | TL     | $5.5 \sim 31.8$  | 0.0120 | 3.100 |
|                   | Enisey River, Russian Fed <sup>2</sup> | TL     | $9.0 \sim 28.0$  | 0.0046 | 3.563 |
| Ctenopharyn-      | Zhujiang River, China <sup>2</sup>     | SL     | NA               | 0.0345 | 2.862 |
| godon idellus     |                                        |        |                  |        |       |
| 0                 | Florida, USA <sup>2</sup>              | TL     | $2.9 \sim 25.2$  | 0.0121 | 3.002 |
|                   | Lake Niushan, China <sup>1</sup>       | TL     | $15.2 \sim 78.2$ | 0.0108 | 3.006 |
|                   | Heilongjiang River, China <sup>2</sup> | SL     | NA               | 0.0178 | 3.047 |
|                   | Culture ponds, Hong Kong,              | TL     | $27.0 \sim 66.0$ | 0.0057 | 3.108 |
|                   | China <sup>2</sup>                     |        |                  |        |       |
| Cyprinus carpio   | Oliver Lake, Indiana, USA <sup>2</sup> | FL     | $29.3 \sim 76.5$ | 0.0158 | 2.624 |
|                   | Lake Volvi, Greece <sup>2</sup>        | TL     | $7.8 \sim 18.1$  | 0.0383 | 2.670 |
|                   | Atrek River, Russian Fed <sup>2</sup>  | FL     | $12.0 \sim 59.0$ | 0.0250 | 2.937 |
|                   | Lake Niushan, China <sup>1</sup>       | TL     | $12.4 \sim 82.3$ | 0.0149 | 2.966 |
|                   | Mekong River, Laos <sup>2</sup>        | FL     | $8.4 \sim 47.0$  | 0.0214 | 3.012 |
|                   | Nagano, Japan <sup>2</sup>             | TL     | $31.5 \sim 57.0$ | 0.0037 | 3.210 |
| Hypophthalmich-   | Zhujiang River, China <sup>2</sup>     | SL     | NA               | 0.0215 | 2.970 |
| thys molitrix     |                                        |        |                  |        |       |
| 5                 | Heilongjiang River, China <sup>2</sup> | SL     | NA               | 0.0137 | 3.093 |
|                   | Lake Niushan, China <sup>1</sup>       | TL     | 15.2 ~ 64.1      | 0.0052 | 3.162 |
| Pseudorasbora     | Lake Niushan, China <sup>1</sup>       | TL     | $3.0 \sim 10.7$  | 0.0074 | 3.081 |
| parva             |                                        |        |                  |        |       |
| 1                 | Lake Mikri Prespa, Greece <sup>2</sup> | FL     | 6.1 ~ 9.5        | 0.0078 | 3.270 |

Table 2. Parameters a and b obtained from different geographical areas for five fish species. The utilized length types and length ranges are also given

TL, total length; SL, standard length; FL, fork length; NA, not available; a and b, the parameters of the length-weight relationship; <sup>1</sup> from this study; <sup>2</sup> from FishBase (Froese and Pauly 2006).

## Acknowledgements

The authors would like to thank Mr. Xinnian Chen, Bin Zhang and Yushun Chen for their help in measuring and weighing the samples in field. The study was financially supported by the Key Technologies R & D Programme of China (No.2002AA601021 and No.2004BA526B05) and the State Key Laboratory of Freshwater Ecology and Biotechnology (No.2005FB02).

### References

- Anderson, R.O. and R.M. Neumann. 1996. Length, weight, and associated structural indices. In: B.R. Murphy and D.W. Willis (eds). Fisheries techniques, 2nd edition. American Fisheries Society, Bethesda, Maryland, 447-482.
- Fang, R.L., T.L. Zhang and H.Q. Liu. 1995. Characteristic of fish fauna of Bao'an Lake and its fishery utilization. In: Y.L. Liang and H.Q. Liu (eds). Resources, environment and fishery ecological management of macrophytic lakes. Science Press, Beijing. (In Chinese with English abstract), 205-210.
- Froese, R. and D. Pauly. Editors. 2006. FishBase. World Wide Web electronic publication. www.fishbase.org, version (05/2006).
- Huang, G.T. and P. Xie. 1996. Changes in the structure of fish community with the analysis on the possible reasons in Lake Donghu, Wuhan. Acta Hydrobiologica Sinica 20 (Supplement). (In Chinese with English abstract), 38-46.
- Kohler, N.E., J.G. Casey and P.A. Turner. 1995. Length-weight relationships for 13 species of sharks from the western North Atlantic. Fishery Bulletin 93: 412-418.
- Liang, Y.L. and H.Q. Liu. 1995. Prologue. In: Y.L. Liang and H.Q. Liu (eds). Resources, environment and fishery ecological management of macrophytic lakes. V. Science Press, Beijing.
- Liu, J.K. 1984. Lakes of the middle and lower basins of the Changjiang (China). In: F.B Taub (ed). Ecosystems of the world 23: Lakes and reservoirs. Elsevier, Amsterdam, 331-335.
- Moutopoulos, D.K. and K.I. Stergiou. 2000. Length-weight and length-length relationships of fish species from the Aegean Sea (Greece). Journal of Applied Ichthyology 18: 200-203.
- Petrakis, G. and K.I. Stergiou. 1995. Weight-length relationships for 33 fish species in Greek waters. Fisheries Research 21: 465-469.
- Song, T.X., G..H. Zhang, J.B. Chang, Z.G. Miao, Z.L. Deng. 1999. Fish diversity in Honghu Lake. Chinese Journal of Applied Ecology 10(1): 86-90. (In Chinese with English abstract).
- Stergiou, K.I. and D.K. Moutopoulos. 2001. A review of length-weight relationships of fishes from Greek Marine Waters. Naga 24(1&2): 23-39.
- Tesch, F.W. 1971. Age and growth. In: W.E. Richer (ed). Methods for assessment of fish production in fresh waters. Blackwell Scientific Publications, Oxford, 99-130.
- Xie, P. and Y.Y. Chen. 1996. 'Evil Quartet' of inland waters in China -- impact of human activities on the loss of biodiversity. Acta Hydrobiologica Sinica 20(Supplement): 6-23. (In Chinese with English abstract).
- Xie, S.G., Y.B. Cui and Z.J. Li. 2000. Ecological studies on lake fisheries on piscivorous fishes: theory and methods. Acta Hydrobiologica Sinica 24(1): 72-81. (In Chinese with English abstract).

- Ye, S.W. 2007. Studies on fish communities and trophic network model of shallow lakes along the middle reach of the Yangtze River. Ph.D. Dissertation. Wuhan: Institute of Hydrobiology, the Chinese Academy of Sciences. (in Chinese with English abstract). 186 p.
- Zhang, T.L., R.L. Fang and Y.B. Cui. 1996. Comparisons of fish community diversity in five lake areas under different levels of fishery development. Acta Hydrobiologica Sinica 20(Supplement): 191-199. (In Chinese with English abstract).
- Zhu, S.Q. 2004. Ichthyological survey of Lake Taihu during 2002-2003. Journal of Lake Sciences 16(2): 120-124. (In Chinese with English abstract).