Differences in Thermal Aggregability of Polymorphic Soluble Muscle Proteins of Channa punctata (Channidae: Channiformes)

RIAZ AHMAD¹, KHURSHEED A. KHAN², R.B. PANDEY¹ and A. HASNAIN¹*

¹Section of Genetics, Department of Zoology
Aligarh Muslim University, Aligarh-202 002 India
²Department of Basic Sciences, A.K. Tibbiya College
Aligarh Muslim University, Aligarh-202 002 India

Abstract

Electrophoresis in native 7.5% polyacrylamide gel made in Tris-HCl and run in Tris-borate revealed three parvalbumin phenotypes in soluble proteins of white skeletal muscle of spotted snakehead Channa punctata. Parvalbumins (PV) were initially recognized because of fast electrophoretic migration at alkaline pH (that indicates acidic nature), exceptional thermostability, relatively high concentration and acetone fractionation. Though constituted by isoforms PVIII, PVI or PVII, acetone purified each of the three phenotypes stacked as single bands of identical Mᵋ of ~11 kD following SDS-PAGE. Phenotype-specific but soluble aggregates were formed by incubating muscle extracts at 70°C. These results demonstrate that modified PAGE protocols can reveal polymorphism, which may be obscure under alternative systems. Further, heat-stable soluble muscle proteins, specifically the isoparvalbumins may be good candidates for such screening.

Introduction

Muscle sarcoplasm is a rich source of soluble proteins. It embraces an entire range of enzymes and proteins of glycolysis and electron trans-
port. As a result, extensive electrophoretic investigations have been made on soluble sarcoplasmic proteins of teleosts. In a number of instances, even genetic variations have been revealed by routine staining of sarcoplasmic protein electrophoregrams. The presence of two variants in soluble muscle proteins electrophoregrams of *Anoplopoma fimbria* and three in *Catostomus* sp. was reported by Tsuyuki et al. (1965; 1967). Population analysis of polymorphic isoforms of low molecular weight proteins of muscle was made in cases of *Menidia menidia* and rainbow trout (Morgan and Ulanowicz 1976; Jones and Glay 1997). *Tinca tinca* and several cyprinids were also shown to display genetic polymorphism within the above group of proteins (Boback and Slechta 1988; Huriaux et al. 1992). High resolution isoelectric focusing (IEF) was used by Taniguchi et al. (1982) to demonstrate polymorphism in soluble muscle proteins of black seabream. Most of the published work employing IEF has otherwise documented species specificity of investigated proteins with diagnostic importance of parvalbumins to identify even cooked fish (Basaglia 1992; Basaglia and Marchetti 1990; Esteve-Romero et al. 1996; Rehbein et al. 2000; Etienne et al. 2001; Berini et al. 2005). However, cost effective and convenient polyacrylamide gel electrophoresis (PAGE) remains a widely preferred technique of resolving protein complexes; specifically, when number of samples is large as in the case of population studies.

We had previously reported that a minor modification in PAGE protocols can help in the detection of isoloci in muscle extracts of air-breathing catfish *Heteropneustes fossilis* (Pandey and Hasnain 1994). This report describes that a change in the sieving property of polyacrylamide gel can detect polymorphism of acidic (fast migrating) muscle proteins of important food fish *Channa punctata* (Bloch). Further identification of this group of proteins was made by incubating muscle extracts at 70°C. Information on genetics of widely distributed spotted snakehead *C. punctata* has implications in aquaculture. It is one of the food fishes with a wide distribution from China, throughout Southeast Asia up to Iran. It carries further commercial importance as a component of integrated fish culture.

Materials and Methods

Source of fish samples and preparation of muscle extracts

Live fish (*Channa punctata*) samples of 15-16.5 cm were obtained from local (Aligarh) market and represented catches from two different
locations. The fish were stunned by cerebral blows and the white dorso-
lateral muscle of the most anterior parts of the body were homogenized in
50 mM Tris-HCl of pH 7.5 at top speed of a mechanical homogenizer
(Biospec, U.S.A., model 985-380). Following centrifugation at 10,000 rpm
(4°C), clear supernatants were saved and either analyzed fresh or stored at -
20°C until electrophoresis.

Protein contents of muscle extracts were estimated following biuret
protocol.

Purification of parvalbumin phenotypes

This was carried out by cold acetone fractionation of muscle ex-
tracts. Precipitate obtained between 65-85% was saved and acetone was
removed by keeping in a dessicator overnight. The protein was dissolved in
Tris-HCl buffer used to homogenize the muscle. Parvalbumin solution thus
obtained was passed through 5x1.5 cm columns of Sepharose 6B. Main
peak was collected and protein concentration was determined using the
biuret method.

Native polyacrylamide gel electrophoresis (PAGE)

The modified buffer system as described by Hasnain et al. (1999)
was used where separating gel is made in 0.375 M Tris-HCl (pH 8.6), 3 %
stacking gel in 0.0125 M Tris-HCl (pH 6.8) and run in 0.0661 M Tris-
0.0324 M boric acid (pH 8.3). Protein bands were stained with coomassie
brilliant blue (CBB).

**Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE)**

Molecular weight (M_r) was estimated with the help of SDS-PAGE
carried out essentially according to the protocol of Schagger and Jagow
(1987). Separating gels were 10% or 12.5 % in acrylamide:crosslinker
(49.5%;3%) and Tris-HCl. Running buffer in both reservoirs was 0.034 M
Tris-glycine of pH 8.6. Upper reservoir also contained 0.001 M tricine.
Low molecular weight (43-6.5 kD) markers were purchased from Banga-
loreGenei (India).

Thermal incubation

Thermal incubation was carried out at 70°C for 30 minutes as de-
scribed previously (Hasnain et al. 1999). Precipitated heat-denatured pro-
tein was removed by centrifugation as described above. Clear supernatants
containing soluble heat-stable proteins were subjected to electrophoresis.
Densitometric analysis

ScionImage software was used for densitometric tracing and Gel-Pro program (Cybernetics, USA) for quantitative estimation of peak areas of protein bands.

Results

In all, soluble proteins from 50 individuals of *Channa punctata* were analyzed. Typical 10 selected lanes that include 3 phenotypes are shown in figure 1. No qualitative difference was observed in the fastest migrating bands in 10% polyacrylamide (PA) gels (Fig. 1a). However in 7.5% gels, fast migrating bands marked *I-III* displayed variations in relative electrophoretic mobilities. On the basis of these differences three phenotypes phenotype-1, phenotype-2 and phenotype-3 were identified (Fig. 1b). The 2-banded phenotype-1 differed from phenotype-3 in slow migration of band *PV1*, while 3-banded phenotype-2 had an additional band (*PVII*) of intermediate mobility. Highest intensity band marked *PVIII* was common to all phenotypes. Out of 50 samples analyzed, relative phenotypic abundance of phenotypes 1-3 were: 0.32, 0.14 and 0.4, respectively. Densitometric tracings (Fig. 3) substantiated the qualitative observations on native PAGE profiles (Fig. 3, left hand panel).

As an acetone-fraction almost pure parvalbumin accounted for 15-25% of total soluble muscle proteins. Since in 10% SDS-PA gels purified parvalbumins stacked as single band just above the buffer line (Fig. 2a), we analyzed purified preparations using 12.5% SDS-PAGE (Fig. 2b).
though in 12.5% SDS-PA gels the variants stacked as single band of ~11 kD above 6.5 kD (aprotinin) band of low Mr marker standards, there is no other band beyond it above or below PV band.

Fig. 2. SDS-PAGE profiles showing stacking of purified parvalbumin phenotypes in 10% (a) and 12.5% gels (b). All isoforms are stacked as single band of ~11 kD in both systems. Loading sequence in 2a: purified parvalbumin phenotypes 1-3 are loaded in lanes 2, 3 and 4, respectively. Flanking lanes 1 and 5 are soluble muscle proteins. Loading sequence in 2b: M (molecular weight markers), 1 whole soluble muscle proteins; 2, 3 and 4 are phenotypes 1-3 while the last lane is of Markers (M).

Fig. 3. Densitometric tracing of native PAGE profiles showing relative intensities and electrophoretic mobilities of soluble aggregates formed during incubation at 70°C for 30 minutes. Native lanes are shown in the left hand panel, while corresponding heat treated variants are shown on the right. ScionImaging software was used.

Electrophoretic conditions are the same as in figure 1.

Polymorphic protein bands of *C. punctata* muscle extracts were also tested for thermostability, which is an established characteristic of parvalbumins (Sherwani et al. 2001; Arif et al. 2007; Carrera et al. 2006). As shown in figure 3, following heat treatment each of the three phenotypes generated type-specific aggregates. The aggregated products remained soluble at low ionic strength of the extraction buffer. Soluble products also retained satisfactory stacking property in PAGE (Fig. 3). Densitographic tracing of PAGE profiles of each heat-treated phenotype (Fig. 3, right hand panel) supports the differences with its corresponding native
form (Fig. 3, left hand panel). A quantitative comparison of the relative intensities of most prominent bands has been made by GelPro software as shown in figure 4. Though for each phenotype the maximum stacking of soluble products was in the same range (bands, # 5-7), individual positional differences in corresponding peak areas of the phenotypes 1-3 are obvious.

![Area diagram of the representative lanes of soluble aggregates in native PAGE profiles showing differences in relative intensities and mobilities of major bands of the aggregates.](image)

Fig. 4. Area diagram of the representative lanes of soluble aggregates in native PAGE profiles showing differences in relative intensities and mobilities of major bands of the aggregates.

Discussion

More extensive information is available on species specificity of electrophoretic profiles of fish parvalbumins (Basaglia 1992; Focant et al. 1990; 1994; Esteve-Romero et al. 1996; Rehbein et al. 2000; Etienne et al. 2001; Berini et al. 2005). In a modified system, Huriaux et al. (1992; 1997) demonstrated polymorphism in parvalbumins of Barbus sp. We had also previously shown that PAGE with minor modifications in discontinuous buffer systems can display heterogeneity of muscle proteins with or without specificity (Pandey and Hasnain 1994; Hasnain et al. 1999; Hasnain et al. 2005). The present report is another example where polymorphism of soluble muscle proteins was detected by a simple change in the sieving property of the gel (Fig. 1b). On the basis of criteria outlined in the next paragraph, they have been identified as parvalbumin isoforms (Bhushan-
Rao and Gerday 1973; Huriaux et al. 1992). Polymorphism was not detected in gels of higher polymer concentration (Fig. 1a). It is general practice to type parvalbumin (PV) isoforms using Roman numerals I-III or more, in a decreasing order of relative electrophoretic mobilities (Huriaux et al. 1992).

Polymorphic protein bands displayed three distinct characteristics of parvalbumin, which is a calcium-binding protein of abundance in skeletal muscle of fish and other cold blooded vertebrates (Bhushan-Rao and Gerday 1973; Hamoir 1974; Huriaux et al. 1992; Hasnain et al. 1999; Erickson et al. 2005). The established characteristics are: (i) high concentration in muscle extract; (ii) fast electrophoretic migration at alkaline pH that suggests their acidic nature; (iii) exceptional thermostability; (iv) precipitation by acetone; and, (v) a molecular weight value of ~11-12.5 kD (Fig. 2). We have recently reported the immunological identification and biochemical characterization of parvalbumins of four species of genus Channa that also included the most common PV phenotype-3 (Arif et al. 2007). Since two new phenotypes (1 and 2) being reported here share five typical biochemical characteristics of parvalbumins, the observed phenotypic variations are not artifacts. To the best of our knowledge, this is the first credible report on polymorphism in fast muscle isoparvalbumins of spotted snakehead C. punctata. Phenotype-1 and phenotype-2 are novel variants which have not so far been reported. The differences between stacking of PV isoforms by native PAGE suggest variations in the isoelectric pH (pI). This, in turn, indicates differences in the primary structure of individual parvalbumin isoforms.

This report is also the first that demonstrates variant-specific aggregation of parvalbumin isoforms. Since generally, thermal treatment of proteins leads to aggregation and insolubility, solubility of PV aggregates in low ionic strength buffer is a remarkable property. Figure 3 and its densitometric analysis also showed that thermal incubation generated extra bands (aggregates) which were phenotype-specific. Highest intensity bands of aggregates also displayed clear differences in relative electrophoretic mobilities (Fig. 4).

Apart from genetic identification, parvalbumin typing by native PAGE has been used to trace ontogeny of some fish species (Huriaux et al. 1997; Sherwani et al. 2001). Recent studies confirm a relaxation role for parvalbumins in physiological functioning of muscle (Wilwert et al. 2006). Other applications include use of PAGE and IEF profiles as biomarkers in identifying cooked and processed fish food products (Esteve-Romero et al.

1996; Etienne et al. 2001) and as standard IEF markers (Rehbein et al. 2000; Berini et al. 2005). Clinical importance of parvalbumins as the major allergen of fish food has also prompted wide range investigations on these proteins of fish species (Sten et al. 2004).

Though, polymorphism involving as many as 7 PV isoforms existed in *Centropomus undecimalis* (Ross et al. 1997), an intraspecies Mendelian combination of isomorphs is yet to be reported. Molecular studies and sequence comparisons confirm that vertebrate PV has α and β, two distinct evolutionary lineages (accessible from CABP Data Library).

Conclusions

Polymorphism in parvalbumin isoforms can be detected by native PAGE using gels of suitable sieving properties or switching over buffers. Anodic stacking in electrophoregrams due to acidic nature, remarkable thermostability and high concentration help initial recognition of these proteins. These criteria helped to identify three phenotypes in soluble muscle extracts of spotted snakehead *Channa punctata*. Acetone fractionation and M_r verified parvalbumin nature of the polymorphic proteins. Significantly, aggregates of heat-treated parvalbumin phenotypes produced variant-specific native PAGE profiles.

Acknowledgements

Authors are grateful to the Aligarh Muslim University for providing the necessary laboratory facilities. The help of Dr. A. L. Bilgrami, Rutgers University (USA) is also acknowledged.

References

Received on 10 February 2007; Accepted on 28 June 2007